A New Microwave-Assisted Protocol for Cellulose Extraction from Eucalyptus and Pine Tree Wood Waste.

Polymers (Basel)

LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

Published: December 2023

AI Article Synopsis

Article Abstract

An enormous interest in the development of efficient protocols for cellulose extraction has been demonstrated in the last few years, although usually based on non-sustainable chemical and thermal approaches. In this work, we propose a new and more sustainable method for cellulose extraction from eucalyptus and pine tree wood waste products exclusively performed using microwave-assisted radiation. The methodology includes three main steps: (i) alkaline treatment; (ii) bleaching I, using HO; and (iii) bleaching II, an acidic treatment. Samples obtained in each step were characterized by Fourier-transform Infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results were compared with the structural and thermal profile of the starting materials, a commercially available microcrystalline cellulose and with an industrial paper pulp sample. Results confirmed that for both types of wood wastes, cellulose was retained during the extraction procedures and that the removal of hemicellulose and lignin was mainly achieved in the last step, as seen by the FTIR spectra and TGA curves. The developed protocol is innovative, as it constitutes an easy and quick approach for extracting cellulose from eucalyptus and pine tree wood waste. Mild chemical and thermal conditions are used during the three extraction steps (microwave irradiation, aqueous solutions, maximum of 120 °C in a total of 3 h). Moreover, environmentally friendly purification steps are applied based on the use of water and ethanol. This approach offers the possibility of a future scale-up study to potentially apply the developed protocol to the extraction of cellulose on an industrial scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780814PMC
http://dx.doi.org/10.3390/polym16010020DOI Listing

Publication Analysis

Top Keywords

cellulose extraction
12
eucalyptus pine
12
pine tree
12
tree wood
12
wood waste
12
extraction eucalyptus
8
chemical thermal
8
cellulose industrial
8
developed protocol
8
cellulose
7

Similar Publications

Holocellulose from a Winemaking By-Product to Develop a Biopolymeric System for Bacterial Immobilization: Adsorption of Ochratoxin A in Wine Model Solutions (Box-Behnken Design).

Toxins (Basel)

January 2025

Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile.

Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex.

View Article and Find Full Text PDF

Boosting the mechanical performance and fire resistivity of white ordinary portland cement pastes via biogenic mesoporous silica nanoparticles.

Sci Rep

January 2025

Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.

This study investigates how biogenic mesoporous silica nanoparticles (MS-NPs) extracted from rice straw residues, a sustainable and economical bio-source, affect White Ordinary Portland Cement (WOPC) paste performance. A comprehensive investigation using varied fractions of 0.25, 0.

View Article and Find Full Text PDF

Effective fractionation of lignocellulose into hemicellulose, cellulose, and lignin is the precondition for full-component valorization. Generally, harsh reaction conditions are used to improve fractionation efficiency, which leads to severe lignin condensation and inhibits its value-added applications. To address this issue, a novel biphasic system consisting of molten salt hydrates (MSHs) and n-butanol was developed for birch fractionation.

View Article and Find Full Text PDF

Efficacy and application potential of purified hydrocolloid coatings sprayed onto maize seeds subjected to anti-aging.

Environ Res

January 2025

Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, P. R. China. Electronic address:

The use of purified hydrocolloids extracted from waste-activated sludge has significant potential for preventing seed deterioration caused by aging. In this study, we compared the advantages and disadvantages of 3 types of purified hydrocolloid seed coatings from different waste sludges and one commercial seed coating at different spraying times (2, 4, 6, and 8). Compared with coated maize seeds, uncoated maize seeds underwent significant functional changes during the aging process according to the infrared spectroscopy results.

View Article and Find Full Text PDF

Fully biobased and robust antibacterial cellulose aerogel for uranium extraction.

Int J Biol Macromol

January 2025

Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Developing efficient adsorbent is imperative for the utilization of uranium resources in seawater. Marine microorganisms and bacteria play an important role in the process of adsorption of uranium. In this work, a completely bio-based antimicrobial aerogel (quaternary cellulose/chitosan aerogel-QCNF/CS) was prepared by cross-linking quaternary cellulose nanofibers (QCNF) and chitosan (CS) via citric acid (CA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!