The conjugate N-adducts of thio-1,3,4-diazole and 2-thiazoline with levoglucosenone were synthesized via a stereoselective, base-catalyzed conjugate N-Michael addition to levoglucosenone at C-4. Structural assignments were established using 1H and 13C NMR analysis, and X-ray single-crystal analysis for one of the compounds. The biological properties of the novel compounds were tested on a cell model. Cytotoxicity was analyzed via colorimetric assay. Two distinct types of cell death, apoptosis and necrosis, were analyzed by determining the phosphatidylserine levels from the outer leaflet of the plasma membrane, caspase activation, and lactate dehydrogenase release. We also evaluated DNA damage using an alkaline comet assay. The level of oxidative stress was measured with a modified comet assay and an H2DCFDA probe. The thio-1,3,4-diazole adduct (FCP23) and the 2-thiazoline adduct (FCP26) exhibit similar cytotoxicity values for cancer cells (ovarian (A2780), breast (MCF-7), cervix (HeLa), colon (LoVo), and brain (MO59J and MO59K)), but their mechanism of action is drastically different. While FCP23 induces oxidative stress, DNA damage, and necrosis, FCP26 induces apoptosis through caspase activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777969PMC
http://dx.doi.org/10.3390/cancers16010216DOI Listing

Publication Analysis

Top Keywords

caspase activation
8
dna damage
8
comet assay
8
oxidative stress
8
-adducts thiadiazole
4
thiadiazole thiazoline
4
thiazoline levoglucosenone
4
levoglucosenone evaluation
4
evaluation cytotoxic
4
cytotoxic anti-cancer
4

Similar Publications

Objective: Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases.

View Article and Find Full Text PDF

Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.

View Article and Find Full Text PDF

Background: Hyperglycemia is a condition in which blood sugar levels increase excessively due to a variety of factors, one of which is the body's inability to regulate insulin properly. Diabetes closely relates to this condition, which significantly contributes to premature death and disability. Long-term diabetes treatment accompanied by a strict diet provides real results in controlling blood glucose levels but can cause side effects.

View Article and Find Full Text PDF

Alzheimer's is an advanced nervous disorder related to aging. The present study aimed to determine the effect of eight-week aerobic training, along with the consumption of Linalool, Cineole, and β-Bourbonene, on the prevention and improvement of Alzheimer's disease. Mice were randomly assigned to 8 groups: control group, mice induced with Alzheimer's disease treated with β-amyloid (Alzheimer group), Alzheimer's mice treated with bioactive compounds of herbal medicine (Linalool with a concentration of 25 mg/kg, Cineole with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 10 μg/ml) by gavage for 8 weeks (Alzheimer+Biocompounds group), Alzheimer's mice treated with aerobic exercise with a moderate intensity treadmill for 8 weeks (Alzheimer's+Training group), Alzheimer's mice treated with bioactive compounds of herbal medicine and aerobic exercise for 8 weeks (Alzheimer+Biocompounds+Training group), healthy mice initially treated with bioactive compounds of herbal medication (Linalool with a concentration of 25 mg/kg, Cineol with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 0.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells protect liver transplants from ischemia-reperfusion injury via an interferon-γ-mediated pathway.

Am J Transplant

December 2024

The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

As important immune regulatory cells, whether innate lymphoid cells (ILCs) are involved in liver transplantation (LT) remains unclear. In a murine orthotopic LT model, we dissected roles of ILCs in liver ischemia-reperfusion injury (IRI). Wild type (WT) grafts suffered significantly higher IRI in Rag2-γc double knockout (DKO) than Rag2 KO recipients, in association with downregulation of group 1 ILCs genes, including IFN-γ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!