Cerebral hypoxia significantly impacts the progression of brain tumors and their resistance to radiotherapy. This study employed streamlined quantitative blood-oxygen-level-dependent (sqBOLD) MRI to assess the oxygen extraction fraction (OEF)-a measure of how much oxygen is being extracted from vessels, with higher OEF values indicating hypoxia. Simultaneously, we utilized vessel size imaging (VSI) to evaluate microvascular dimensions and blood volume. A cohort of ten patients, divided between those with glioma and those with brain metastases, underwent a 3 Tesla MRI scan. We generated OEF, cerebral blood volume (CBV), and vessel size maps, which guided 3-4 targeted biopsies per patient. Subsequent histological analyses of these biopsies used hypoxia-inducible factor 1-alpha (HIF-1α) for hypoxia and CD31 for microvasculature assessment, followed by a correlation analysis between MRI and histological data. The results showed that while the sqBOLD model was generally applicable to brain tumors, it demonstrated discrepancies in some metastatic tumors, highlighting the need for model adjustments in these cases. The OEF, CBV, and vessel size maps provided insights into the tumor's hypoxic condition, showing intertumoral and intratumoral heterogeneity. A significant relationship between MRI-derived measurements and histological data was only evident in the vessel size measurements (r = 0.68, < 0.001).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778427PMC
http://dx.doi.org/10.3390/cancers16010138DOI Listing

Publication Analysis

Top Keywords

vessel size
16
brain tumors
8
blood volume
8
cbv vessel
8
size maps
8
histological data
8
mri-based assessment
4
brain
4
assessment brain
4
brain tumor
4

Similar Publications

Computational modeling of superparamagnetic nanoparticle-based (affinity) diagnostics.

Front Bioeng Biotechnol

December 2024

Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

Introduction: Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are renowned for their superparamagnetic behavior, allowing precise control under external magnetic fields. This characteristic makes them ideal for biomedical applications, including diagnostics and drug delivery. Superparamagnetic IONPs, which exhibit magnetization only in the presence of an external field, can be functionalized with ligands for targeted affinity diagnostics.

View Article and Find Full Text PDF

A coaxial 3D bioprinted hybrid vascular scaffold based on decellularized extracellular matrix/nano clay/sodium alginate bioink.

Int J Biol Macromol

December 2024

State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

Currently, vascular grafting is the preferred option to replace or bypass the defective vascular segments, but finding materials with good biocompatibility and diversity alternative for practical clinical applications are still the challenge. The construction of tissue engineered blood vessels (TEBVs) with complex structures will be realized using 3D bioprinting technology, which provides a new idea for vascular transplantation. In this paper, the decellularized extracellular matrix (dECM)/nano clay (NC)/sodium alginate (SA) hybrid bioink was prepared to construct tubular scaffolds in vitro by coaxial 3D bioprinting.

View Article and Find Full Text PDF

Objective: The primary objective of this study was to identify the risk of metastasis to lymph nodes above the inferior mesenteric artery (IMA) in endometrioid-type endometrial cancer (EC) and the factors that influence metastasis.

Methods: The study included patients who had been operated on for endometrioid-type EC in three gynecological oncology centers between 2007 and 2023. The supramesenteric lymph node (SM-LN) is the region between the left renal vein and the IMA, whereas the inframesenteric lymph node (IM-LN) is the region between the IMA and the aortic bifurcation, as determined by the level of the IMA.

View Article and Find Full Text PDF

Objectives: To evaluate the prevalence and predictors of ischemic lesions on thin-slice DWI (2 mm) in endovascular treatments for unruptured intracranial aneurysms (UIA), particularly explore the potential relationship with pathway plaques.

Methods: Participants eligible for endovascular treatments with UIA at a national stroke center between March 2023 and August 2023 were prospectively enrolled. All participants performed thin-slice DWI (slice thickness of 2 mm) before and after procedures.

View Article and Find Full Text PDF

Skin layer-specific spatiotemporal assessment of micrometabolism during wound angiogenesis.

Commun Biol

December 2024

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057, Zurich, Switzerland.

Proper oxygen delivery through the microvasculature to injury site is essential to ensure the metabolic cascade during wound healing. Adaptation of vascular structure and oxygenation is key to unravel the regulation of blood perfusion, oxygen distribution and new tissue formation. Yet, visualizing micrometabolic responses at large scale in unperturbed living tissue remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!