Skin cancer is a widespread disease that typically develops on the skin due to frequent exposure to sunlight. Although cancer can appear on any part of the human body, skin cancer accounts for a significant proportion of all new cancer diagnoses worldwide. There are substantial obstacles to the precise diagnosis and classification of skin lesions because of morphological variety and indistinguishable characteristics across skin malignancies. Recently, deep learning models have been used in the field of image-based skin-lesion diagnosis and have demonstrated diagnostic efficiency on par with that of dermatologists. To increase classification efficiency and accuracy for skin lesions, a cutting-edge multi-layer deep convolutional neural network termed SkinLesNet was built in this study. The dataset used in this study was extracted from the PAD-UFES-20 dataset and was augmented. The PAD-UFES-20-Modified dataset includes three common forms of skin lesions: seborrheic keratosis, nevus, and melanoma. To comprehensively assess SkinLesNet's performance, its evaluation was expanded beyond the PAD-UFES-20-Modified dataset. Two additional datasets, HAM10000 and ISIC2017, were included, and SkinLesNet was compared to the widely used ResNet50 and VGG16 models. This broader evaluation confirmed SkinLesNet's effectiveness, as it consistently outperformed both benchmarks across all datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778045PMC
http://dx.doi.org/10.3390/cancers16010108DOI Listing

Publication Analysis

Top Keywords

skin lesions
16
skin
8
classification skin
8
multi-layer deep
8
deep convolutional
8
convolutional neural
8
neural network
8
skin cancer
8
pad-ufes-20-modified dataset
8
cancer
5

Similar Publications

Interleukin-10 (IL-10) is an immunomodulatory molecule that may play an immunosuppressive role in nonmelanoma skin cancer (NMSC), specifically basal cell carcinoma (BCC). We analyzed the role of IL10 promoter variants in genetic determinants of BCC susceptibility and their association with IL10 mRNA and IL-10 serum levels. Three promoter variants (- 1082 A > G, - 819 T > C, and - 592 A > C) were examined in 250 BCC patients and 250 reference group (RG) individuals.

View Article and Find Full Text PDF

Both the surgical non-cultured melanocyte-keratinocyte transplant procedure (MKTP) and intradermal injection of 5-Fluorouracil (5-FU) are effective in the treatment of vitiligo. Intrablisters injection of MKTP was done in one study with better results than MKTP application after ablative CO2 laser of the reciepient area. However, intrablister injection of 5-FU was not done before.

View Article and Find Full Text PDF

Sweet syndrome, also known as acute febrile neutrophilic dermatosis, is a rare condition characterised by fever, leucocytosis, and painful skin lesions. This retrospective study analysed 21 patients with Sweet syndrome treated at the Affiliated Hospital of Xuzhou Medical University from January 2015 to June 2022. The study aimed to investigate the aetiology, clinicopathological features, and treatment outcomes.

View Article and Find Full Text PDF

Objective: The direction of this study was to detect and analyze the specific mechanism of anti-apoptosis in mesenchymal stem cells (MSCs) cells caused by high expression of BCL2.

Methods: Bioinformatics was completed in Link omics. GO analysis and KEGG analysis were carried out, and the grope tool of Link omics database was used to evaluate PPI information and other core path analysis information.

View Article and Find Full Text PDF

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!