Rituximab, a prototypic anti-CD20 mAb, and the third-generation anti-CD20 mAb obinutuzumab differ in their ability to activate the complement system. According to recent studies, this contrast stems from the architecture of the antigen-antibody complex formed by these two mAbs that facilitates (rituximab) or disables (obinutuzumab) further oligomerization, leading to engagement of the initial classical complement pathway component C1q. We examined whether a gain-of-function C2 variant that acts downstream of C1q and enforces the formation of complement convertase resistant to physiological decay can impact complement activation by obinutuzumab. Co-application of the C2 variant with obinutuzumab and human serum resulted in complement-dependent cytotoxicity equal to or higher than attainable for rituximab. This effect was observed either in serum or hirudin-anticoagulated whole blood. Long-term (24 h) overall cytotoxicity of obinutuzumab was improved in target cells of moderate sensitivity to complement but diminished in cells of low sensitivity. Our results demonstrate that the ability of complement activation of a given antibody is not ultimately determined at the stage of initial interactions with its target antigen but is modulable at later stages of the cascade and that the benefit of the acquisition of this new effector mechanism by obinutuzumab depends on the target cell characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778491PMC
http://dx.doi.org/10.3390/cancers16010049DOI Listing

Publication Analysis

Top Keywords

complement-dependent cytotoxicity
8
anti-cd20 mab
8
complement activation
8
obinutuzumab
7
complement
6
acquisition complement-dependent
4
cytotoxicity type
4
type anti-cd20
4
anti-cd20 therapeutic
4
therapeutic antibody
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!