Gaining the ability to audit the behavior of deep learning (DL) denoising models is of crucial importance to prevent potential hallucinations and adversarial clinical consequences. We present a preliminary version of AntiHalluciNet, which is designed to predict spurious structural components embedded in the residual noise from DL denoising models in low-dose CT and assess its feasibility for auditing the behavior of DL denoising models. We created a paired set of structure-embedded and pure noise images and trained AntiHalluciNet to predict spurious structures in the structure-embedded noise images. The performance of AntiHalluciNet was evaluated by using a newly devised residual structure index (RSI), which represents the prediction confidence based on the presence of structural components in the residual noise image. We also evaluated whether AntiHalluciNet could assess the image fidelity of a denoised image by using only a noise component instead of measuring the SSIM, which requires both reference and test images. Then, we explored the potential of AntiHalluciNet for auditing the behavior of DL denoising models. AntiHalluciNet was applied to three DL denoising models (two pre-trained models, RED-CNN and CTformer, and a commercial software, ClariCT.AI [version 1.2.3]), and whether AntiHalluciNet could discriminate between the noise purity performances of DL denoising models was assessed. AntiHalluciNet demonstrated an excellent performance in predicting the presence of structural components. The RSI values for the structural-embedded and pure noise images measured using the 50% low-dose dataset were 0.57 ± 31 and 0.02 ± 0.02, respectively, showing a substantial difference with a -value < 0.0001. The AntiHalluciNet-derived RSI could differentiate between the quality of the degraded denoised images, with measurement values of 0.27, 0.41, 0.48, and 0.52 for the 25%, 50%, 75%, and 100% mixing rates of the degradation component, which showed a higher differentiation potential compared with the SSIM values of 0.9603, 0.9579, 0.9490, and 0.9333. The RSI measurements from the residual images of the three DL denoising models showed a distinct distribution, being 0.28 ± 0.06, 0.21 ± 0.06, and 0.15 ± 0.03 for RED-CNN, CTformer, and ClariCT.AI, respectively. AntiHalluciNet has the potential to predict the structural components embedded in the residual noise from DL denoising models in low-dose CT. With AntiHalluciNet, it is feasible to audit the performance and behavior of DL denoising models in clinical environments where only residual noise images are available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795730 | PMC |
http://dx.doi.org/10.3390/diagnostics14010096 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
The fusion of synthetic aperture radar (SAR) and optical satellite imagery poses significant challenges for ship detection due to the distinct characteristics and noise profiles of each modality. Optical imagery provides high-resolution information but struggles in adverse weather and low-light conditions, reducing its reliability for maritime applications. In contrast, SAR imagery excels in these scenarios but is prone to noise and clutter, complicating vessel detection.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic and Information Engineering, Ankang University, Ankang 725000, China.
Convolutional neural networks have achieved excellent results in image denoising; however, there are still some problems: (1) The majority of single-branch models cannot fully exploit the image features and often suffer from the loss of information. (2) Most of the deep CNNs have inadequate edge feature extraction and saturated performance problems. To solve these problems, this paper proposes a two-branch convolutional image denoising network based on nonparametric attention and multiscale feature fusion, aiming to improve the denoising performance while better recovering the image edge and texture information.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Anhui Institute of Information Technology, Wuhu, 241199, Anhui, China.
To address the challenge of accurately capturing tool wear states in small sample scenarios, this paper proposes a tool wear prediction method that combines XGBoost feature selection with a PSO-BP network. In order to solve the problem of input feature selection and parameter selection in BP neural network, a double-layer programming model of input feature and parameter selection is established, which is solved by XGBoost and PSO. Initially, vibration and cutting force signals from CNC machining are preprocessed using time-domain segmentation, Hampel filtering, and wavelet denoising.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
College of Information Science and Engineering, Hohai University, Nanjing 211100, China.
(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China.
During long-term operation in complex environments, the pressure pipeline systems are prone to damage and faults, and serious safety accidents may occur without real-time condition monitoring. Moreover, in traditional non-contact monitoring approaches, acoustic signals are widely employed for condition monitoring for pressure pipelines, which are easily contaminated by background noise and provide unsatisfactory accuracy. As a tool for quantifying uncertainty and complexity, signal entropy is applied to detect abnormal conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!