A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental Examination of Conventional, Semi-Automatic, and Automatic Volumetry Tools for Segmentation of Pulmonary Nodules in a Phantom Study. | LitMetric

The aim of this study is to examine the precision of semi-automatic, conventional and automatic volumetry tools for pulmonary nodules in chest CT with phantom N1 LUNGMAN. The phantom is a life-size anatomical chest model with pulmonary nodules representing solid and subsolid metastases. Gross tumor volumes (GTVs) were contoured using various approaches: manually (0); as a means of semi-automated, conventional contouring with (I) adaptive-brush function; (II) flood-fill function; and (III) image-thresholding function. Furthermore, a deep-learning algorithm for automatic contouring was applied (IV). An intermodality comparison of the above-mentioned strategies for contouring GTVs was performed. For the mean GTV (standard deviation (SD)), the interquartile range (IQR)) was 0.68 mL (0.33; 0.34-1.1). GTV segmentation was distributed as follows: (I) 0.61 mL (0.27; 0.36-0.92); (II) 0.41 mL (0.28; 0.23-0.63); (III) 0.65 mL (0.35; 0.32-0.90); and (IV) 0.61 mL (0.29; 0.33-0.95). GTV was found to be significantly correlated with GTVs (I) < 0.001, r = 0.989 (III) = 0.001, r = 0.916, and (IV) < 0.001, r = 0.986, but not with (II) = 0.091, r = 0.595. The Sørensen-Dice indices for the semi-automatic tools were 0.74 (I), 0.57 (II) and 0.71 (III). For the semi-automatic, conventional segmentation tools evaluated, the adaptive-brush function (I) performed closest to the reference standard (0). The automatic deep learning tool (IV) showed high performance for auto-segmentation and was close to the reference standard. For high precision radiation therapy, visual control, and, where necessary, manual correction, are mandatory for all evaluated tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804383PMC
http://dx.doi.org/10.3390/diagnostics14010028DOI Listing

Publication Analysis

Top Keywords

pulmonary nodules
12
automatic volumetry
8
volumetry tools
8
semi-automatic conventional
8
adaptive-brush function
8
reference standard
8
tools
5
experimental examination
4
conventional
4
examination conventional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!