Feather follicle density plays an important role in appealing to consumers' first impressions when making purchasing decisions. However, the molecular network that contributes to this trait remains largely unknown. The aim of this study was to perform transcriptome and weighted gene co-expression network analyses to determine the candidate genes relating to feather follicle density in Wannan male chickens. In total, five hundred one-day-old Wannan male chickens were kept in a conventional cage system. Feather follicle density was recorded for each bird at 12 weeks of age. At 12 weeks, fifteen skin tissue samples were selected for weighted gene co-expression network analysis, of which six skin tissue samples (three birds in the H group and three birds in the L group) were selected for transcriptome analysis. The results showed that, in total, 95 DEGs were identified, and 56 genes were upregulated and 39 genes were downregulated in the high-feather-follicle-density group when compared with the low-feather-follicle-density group. Thirteen co-expression gene modules were identified. The red module was highly significantly negatively correlated with feather follicle density ( < 0.01), with a significant negative correlation coefficient of -0.72. In total, 103 hub genes from the red module were screened. Upon comparing the 103 hub genes with differentially expressed genes (DEGs), it was observed that 13 genes were common to both sets, including , , , , and . From the red module, , , , , , and were selected as the most important genes. These genes were enriched in the DNA binding pathway, the heterocyclic compound binding pathway, the cell cycle pathway, and the oocyte meiosis pathway. This study suggests that , , , , , and may be involved in regulating the development of feather follicle density in Wannan male chickens. The results of this study reveal the genetic structure and molecular regulatory network of feather follicle density in Wannan male chickens, and provide a basis for further elucidating the genetic regulatory mechanism and identifying molecular markers with breeding value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778273 | PMC |
http://dx.doi.org/10.3390/ani14010173 | DOI Listing |
Microsc Res Tech
December 2024
Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt.
This study aimed to describe the morphological features and microstructure of the upper, lower, and third eyelids of the black-winged kite, Elanus caeruleus, and to characterize the organized lymphoid follicles and lymphocytes in the eyelid mucosa. Additionally, it aimed to illustrate the importance of the eye adnexa in the eye's immune protection. The upper, lower, and third eyelids display varying morphological differences that seem to be closely linked to the birds' way of life, indicating adjustments to their environment and eating behaviors.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:
The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation.
View Article and Find Full Text PDFPoult Sci
August 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Dermal hyperpigmentation stands out among the various skin pigmentation phenotypes in chickens, where most other pigmentation variants affect feather color and patterning predominantly. Despite numerous black chicken breeds worldwide, only a select few exhibit comprehensive black pigmentation, which encompasses the skin, meat, flesh, and bones. The process of skin melanin pigmentation is intricate and develops successively.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
November 2024
Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
Background: Dietary lysine and apparent nitrogen-corrected metabolizable energy (AMEn) are two key variables affecting the production of breeder hens. In this study, the effects and interactions of lysine and AMEn on yellow-feathered broiler breeder hens were investigated. A total of 720 30-week-old breeder hens were fed in a 5 (lysine: 0.
View Article and Find Full Text PDFJ Wildl Dis
October 2024
The Janet L. Swanson Wildlife Hospital and the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 131 Swanson Drive, Ithaca, New York 14850, USA.
Great Crested Flycatchers (Myiarchus crinitus), migratory passerines with a breeding range throughout the northeastern, midwestern, and southern US, are banded annually at the Braddock Bay Bird Observatory located on the southern shore of Lake Ontario, New York, USA. In 2016, a Great Crested Flycatcher was observed with distinct lesions in the gular and ventral neck region, which prompted evaluation for similar lesions in subsequently trapped flycatchers and other passerine species. From 2016 to 2023, 62/102 banded Great Crested Flycatchers had their gular region examined, and seven were found to have lesions (11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!