Somatic cell nuclear transfer or cytoplasm microinjection has widely been used to produce genome-edited farm animals; however, these methods have several drawbacks which reduce their efficiency. In the present study, we describe an easy adaptable approach for the introduction of mutations using CRISPR-Cas9 electroporation of zygote (CRISPR-EP) in buffalo. The goal of the study was to determine the optimal conditions for an experimental method in which the CRISPR/Cas9 system is introduced into in vitro-produced buffalo zygotes by electroporation. Electroporation was performed using different combinations of voltage, pulse and time, and we observed that the electroporation in buffalo zygote at 20 V/mm, 5 pulses, 3 msec at 10 h post insemination (hpi) resulted in increased membrane permeability and higher knockout efficiency without altering embryonic developmental potential. Using the above parameters, we targeted buffalo POU5F1 gene as a proof of concept and found no variations in embryonic developmental competence at cleavage or blastocyst formation rate between control, POU5F1-KO, and electroporated control (EC) embryos. To elucidate the effect of POU5F1-KO on other pluripotent genes, we determined the relative expression of SOX2, NANOG, and GATA2 in the control (POU5F1 intact) and POU5F1-KO-confirmed blastocyst. POU5F1-KO significantly ( ≤ 0.05) altered the expression of SOX2, NANOG, and GATA2 in blastocyst stage embryos. In conclusion, we standardized an easy and straightforward protocol CRISPR-EP method that could be served as a useful method for studying the functional genomics of buffalo embryos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778295PMC
http://dx.doi.org/10.3390/ani14010134DOI Listing

Publication Analysis

Top Keywords

buffalo zygotes
8
embryonic developmental
8
expression sox2
8
sox2 nanog
8
nanog gata2
8
buffalo
6
optimising electroporation
4
electroporation condition
4
condition crispr/cas-mediated
4
crispr/cas-mediated knockout
4

Similar Publications

Supplementation with L-kynurenine during in vitro maturation improves bovine oocytes developmental competence through its antioxidative action.

Theriogenology

February 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China. Electronic address:

Oxidative stress impairs the developmental potential of oocytes during in vitro maturation (IVM). L-kynurenine (L-KYN), an endogenous metabolite, exhibits antioxidant, anti-inflammatory and neuroprotective effects. This work aimed to evaluate the potential effects of L-KYN on bovine oocyte IVM and its mechanisms.

View Article and Find Full Text PDF

The study was designed to monitor the cleavage rate (CR) and in-vitro cultivation rate (IVC) after addition of energy sources, non-essential amino acids, and antioxidants to the Synthetic oviductal fluid (SOF) and FertiCult. After in-vitro maturation and in-vitro fertilization, presumptive zygotes were cultured in one of two culture media: FertiCult media and SOF medium, supplemented with pyruvate, glucose, and sodium lactate as energy sources, as well as 10, 20, 250, 500, and 750 mg non-essential amino acids, and antioxidants. All stages of cleavage rate (CR), and in-vitro cultivation rate (IVC) of embryonic development including morula stage (MOR) and blastocyst (BLAS) have been assessed.

View Article and Find Full Text PDF

Growth differentiation factor 9 ( is an oocyte-specific paracrine factor involved in bidirectional communication, which plays an important role in oocyte developmental competence. In spite of its vital role in reproduction, there is insufficient information about exact transcriptional control mechanism of GDF9. Hence, present study was undertaken with the aim to study the expression of basic helix-loop-helix (bHLH) transcription factors (TFs) such as the factor in the germline alpha (FIGLA), twist-related protein 1 (TWIST1) and upstream stimulating factor 1 and 2 (USF1 and USF2), and nuclear receptor (NR) superfamily TFs like germ cell nuclear factor (GCNF) and oestrogen receptor 2 (ESR2) under three different maturation (IVM) groups [follicle-stimulating hormone (FSH), insulin-like growth factor-1 (IGF1) and oestradiol)] along with all supplementation group as positive control, to understand their role in regulation of GDF9 expression.

View Article and Find Full Text PDF
Article Synopsis
  • - The SRY gene on the Y chromosome is crucial for sex determination in mammals, directing the development of testes instead of ovaries, and mutations in this gene can lead to significant changes in sexual traits.
  • - This study utilized CRISPR-Cas9 technology to target and edit the SRY gene in buffalo embryos, confirming efficient gene cleavage through experiments in buffalo fibroblasts and single-stage zygotes.
  • - Results indicated that mutations in the SRY gene led to increased expression of the female-specific gene Wnt4 and decreased expression of the male-specific gene SOX9, suggesting a shift towards female sex determination pathways, with implications for breeding strategies.
View Article and Find Full Text PDF

We have established trophoblast cell lines, from parthenogenesis-derived buffalo blastocysts. The buffalo trophoblast cells were cultured continuously over 200 days and 21 passages. These cells were observed by phase-contrast microscopy for their morphology and characterized by reverse transcriptase polymerase chain reaction and immunofluorescence against trophoblast-specific markers and cytoskeletal proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!