Soybean use has been low in pet foods, even though they are an excellent source of protein, polyunsaturated fatty acids, and gut fermentable fibers. The purpose of this evaluation was to conduct a systematic review of the public literature to explore how soybeans have been researched for pet food applications since 2000 and to provide strengths, weaknesses, opportunities, and threats for soybeans in the pet food industry. The review covered a total of 44 articles related to soybean ingredients and their potential value in the pet food arena. The articles were categorized by their research contents and narratively summarized to demonstrate useful information to both the pet and soybean industries. When soybean-based products have been adequately processed to reduce the antinutritive factors, they are comparable to processed animal proteins in nutritional value, palatability, and functionality in pet food processing. We conclude that various food processing technologies and the versatility of soybean ingredients allow soybean to have considerable inclusion potential in pet foods. More research on dietary soybean ingredients regarding pet food processing, fermentation benefits on health, and consumer acceptance will be needed to understand soybean's position in the future pet food industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778487 | PMC |
http://dx.doi.org/10.3390/ani14010016 | DOI Listing |
The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea.
The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.
View Article and Find Full Text PDFOne Health
December 2024
Centre for the Mathematical Modelling of Infectious Diseases (CMMID), London School of Hygiene and Tropical Medicine, London, UK.
Antibiotic use (ABU) in animals is postulated to be a major contributor to selection of antibiotic resistance (ABR) which subsequently causes infections in human populations. However, there are few quantifications of the size of this association. Denmark, as a country with high levels of pig production and strong ABR surveillance data, is an ideal case study for exploring this association.
View Article and Find Full Text PDFMolecules
January 2025
Polymer Processing Division, Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
Packaging materials mainly serve the function of protecting products. The most common representative of this group is poly(ethylene terephthalate) (PET), which is not biodegradable and therefore, its waste might be burdensome to the environment. Thus, this work aims to develop outlines for obtaining polyester-based systems, preferably biobased ones, intended for the packaging industry and their detailed characterization.
View Article and Find Full Text PDFAmbio
January 2025
School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
Since May 2024, New Caledonia has faced civil unrest, economic collapse, food insecurity, and social instability, severely disrupting environmental management in this globally significant biodiversity hotspot. The crisis has exacerbated threats to biodiversity from poaching, illegal fishing, deforestation, urban fires, waste pollution, and pet abandonment, while conservation efforts have ground to a halt. Immediate action is needed to address these threats to nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!