Selenomethionine, a Trace Element, Increases Osteoblastic Activity of hFOB 1.19 Cells (an In Vitro Study).

Biol Trace Elem Res

Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, Eskisehir, Turkey.

Published: November 2024

Osteoporosis and resulting fractures affect a significant group of people in the world. It has been shown in many studies that selenium has positive effects on bone metabolism. Based on this information, the aim of this study is to investigate whether bone differentiation will start in a shorter time by applying selenomethionine (SeMet) to hFOB cells.First, hFOB 1.19 cells were cultured. Safe doses of SeMet were determined by MTT and LDH tests. Ossification levels were determined by alizarin red staining and measurement of alkaline phosphatase enzyme levels. The results were analyzed with statistical tests.It was observed that SeMet increased cell viability at concentrations of 10, 25, 50, 100, and 200 µM in 24 h. At these concentrations, cell viability increased above the control, the viabilities were as follows: 109.4%, 104.9%, 104.3%, 103.15%, and 100.27%. High doses of SeMet significantly reduce cell viability. According to Alizarin red staining, SeMet increases the amount of calcium deposits in hFOB cells in a dose-dependent manner. In the experimental groups, the highest ALP enzyme was determined in the 7-day SeMet application. The most effective dose was measured as 15 µM.It was determined that SeMet, which is found as a trace element in living things in nature, increases the viability of hFOB cells, which are osteoblast cell precursors, and increases osteoblastic differentiation and osteoblastic activity in these cells. Our results are at a level that sheds light on an important problem in public health.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-023-04055-7DOI Listing

Publication Analysis

Top Keywords

cell viability
12
trace element
8
increases osteoblastic
8
osteoblastic activity
8
hfob 119
8
119 cells
8
doses semet
8
alizarin red
8
red staining
8
hfob cells
8

Similar Publications

Role of P2X7 receptor in the progression and clinicopathological characteristics of gastric cancer.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi province, China.

P2X7 receptor (P2X7R) plays a role in regulating tumor progression, but it is unclear whether P2X7R affects the pathological characteristics of patients with gastric cancer and the activity of gastric cancer cells. Therefore, this study preliminarily investigated the relationship between P2X7R and clinicopathological features of patients with gastric cancer, and further explored the effect of P2X7R on the proliferation, migration and invasion of gastric cancer cells through functional experiments. The results showed that P2X7R was highly expressed in gastric cancer tissues and gastric cancer cells.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!