A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile synthesis of new metal-organic framework/chitosan composite sponge for Hg(II) removal: Characterization, adsorption efficiency, and optimization using Box-Behnken design. | LitMetric

Facile synthesis of new metal-organic framework/chitosan composite sponge for Hg(II) removal: Characterization, adsorption efficiency, and optimization using Box-Behnken design.

Int J Biol Macromol

Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street 35516, Egypt. Electronic address:

Published: February 2024

The objective of this research was to develop a novel adsorbent to eliminate mercury (Hg(II)) from water. A unique citrate-crosslinked La-MOF/citrate crosslinked chitosan composite sponge (La-MOF@CSC composite sponge) was successfully synthesized in an acidic environment using a one-step technique. Modifying the composition of adsorbent materials is a commonly employed strategy to enhance adsorption capacity, particularly for materials composed of metal-organic frameworks. The study investigated the impact of the composite sponge on the adsorption and removal of Hg(II). The composite sponge exhibited a maximum adsorption capacity (q) for Hg(II) at 765.22 mg/g and an impressive high surface area of 1208 m/g. Various factors influencing the adsorption capacity were taken into account in this study. The adsorption isotherm and kinetics were modeled using Langmuir and pseudo-second-order equations, respectively. Consistent with thermodynamics, the adsorption process was identified as spontaneous and endothermic. The quantities of adsorbed substances increased with rising temperature. The La-MOF@CSC composite sponge demonstrated the ability to be reused up to five times with satisfactory efficiency, retaining its chemical composition and exhibiting similar XRD and XPS data before and after each reuse. The interaction between heavy metals and the La-MOF/CSC composite sponge was examined. Optimization of the adsorption outcomes was conducted using the Box-Behnken design (BBD).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129282DOI Listing

Publication Analysis

Top Keywords

composite sponge
28
adsorption capacity
12
adsorption
8
box-behnken design
8
la-mof@csc composite
8
composite
7
sponge
7
facile synthesis
4
synthesis metal-organic
4
metal-organic framework/chitosan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!