ALKBH5 regulates paclitaxel resistance in NSCLC via inhibiting CEMIP-mediated EMT.

Toxicol Appl Pharmacol

Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China. Electronic address:

Published: February 2024

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2024.116807DOI Listing

Publication Analysis

Top Keywords

alkbh5
11
over-expression alkbh5
8
emt process
8
cancer cells
8
nsclc
5
alkbh5 regulates
4
regulates paclitaxel
4
paclitaxel resistance
4
resistance nsclc
4
nsclc inhibiting
4

Similar Publications

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear.

View Article and Find Full Text PDF

The role and mechanism of m6A methylation in diabetic nephropathy.

Life Sci

January 2025

School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China. Electronic address:

Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus, characterized by progressive deterioration of renal structure and function, which may eventually lead to end-stage kidney disease (ESKD). The N6-methyladenosine (m6A) methylation, an important modality of RNA modification, involves three classes of key regulators, writers (e.g.

View Article and Find Full Text PDF

ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis.

Am J Physiol Cell Physiol

January 2025

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy.

View Article and Find Full Text PDF

ALKBH5 facilitates tumor progression via an m6A-YTHDC1-dependent mechanism in glioma.

Cancer Lett

January 2025

Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China. Electronic address:

N-methyladenosine (m6A) methylation, is a well-known epigenetic modification involved in various biological processes, including tumorigenesis. However, the role of AlkB homolog 5 (ALKBH5), a critical component of m6A modification, remains unclear in glioma. This study investigates the function of ALKBH5 in glioma progression and its potential as a therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!