Recycling of waste calcium carbonate in lignocellulosic biorefining chain for chiral lactic acid production.

Bioresour Technol

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:

Published: March 2024

One of the major end-products of lignocellulosic biorefining chain is the solid residues containing various compounds. The present approach to solid residues treatment is combustion for generation of heat and electricity. This study investigated the potential for recycling of the combustion ash from the solid residues after lignocellulosic dry biorefining process. A range of characterizations showed that the combustion ash contained a high amount of calcium carbonate. By recycling the ash as the neutralizer in biorefining process, the waste calcium carbonate in the ash was efficiently utilized for pretreated biomass neutralization and can replace 40 % of calcium hydroxide for lactic acid production. The chiral L-lactic acid titer reached 102.4 ± 3.6 g/L from 20 % (w/w) solids loading of wheat straw. Three feasible strategies of ash recycling for the investigated biorefinery concept were further proposed base on the rigorous calcium mass calculation, which can efficiently reduce the consumption of neutralizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130303DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
12
solid residues
12
waste calcium
8
lignocellulosic biorefining
8
biorefining chain
8
lactic acid
8
acid production
8
combustion ash
8
biorefining process
8
calcium
5

Similar Publications

Recently biocementation has got attention of many researchers worldwide as one of the most potent techniques for sustainable construction. Several studies have been carried out worldwide on biocementation by urea hydrolysis. Biocementation by bacterially induced calcium carbonate precipitation by different bacterial species has been among the most widely researched areas in this field.

View Article and Find Full Text PDF

A c-type lectin with dual function of immunology and mineralization from the freshwater oyster ( Lea).

Front Immunol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.

Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.

View Article and Find Full Text PDF

Bacterial activation level determines Cd(II) immobilization efficiency by calcium-phosphate minerals in soil.

J Hazard Mater

January 2025

National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Soil mineral properties significantly influence the mobility of Cd(II) within the soil matrix. However, the limited understanding of how microbial metabolism affects mineral structure at the microscale poses challenges for in situ remediation. Here, we designed a model calcium-phosphate system in a urea-rich environment to explore the impact of different microbial activation levels on Cd(II) fixation at mineral interfaces.

View Article and Find Full Text PDF

The antiscale magnetic treatment (ASMT) claims to utilize magnetic field to combat scaling. However, its underlying mechanism, effectiveness, and reliability remain controversial. To address these contentious aspects, we analyze the influence of a magnetic field on the different stages of typical scale formation, using [Formula: see text] as a model scale.

View Article and Find Full Text PDF

Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!