Background: Microplastics (MPs) are found in all environments: aquatic, airborne, and terrestrial. While their presence is not disputed, their potential impacts are not yet known.
Objective: To undertake a pilot analysis of MP contamination in archaeological sediment samples, taken in the late 1980s from two archaeological excavation sites in the historic city of York (UK) as well as contemporary sources close to the same sites, with respect to the presence (if any), levels, and characteristics of any particles identified.
Methods: This study analysed pre-digested sediment samples as follows: n = 3 from Queens Hotel (QH) site and n = 3 Wellington Row (WR) contemporary core-source, and n = 3 QH and n = 3 WR archival-source samples, alongside procedural controls (n = 8), using μFTIR spectroscopy (size limitation of 5 μm) to detect and characterise any MPs present.
Results: In total, 66 MP particles consisting of 16 MP polymer types were identified across both site and contemporary/archived samples. The highest levels of MP particles, 20,588 MP/kg was identified at the lowest sample depth (∼7.35 m) at archived WR, 5910 MP/kg in the mid depth layer (∼5.85 m) at the contemporary QH site. Of the MPs detected in sediment samples overall, polytetrafluoroethylene (PTFE), polybutylene sulfone (PSU), and polypropylene: polyethylene (PE:PP) copolymer polymer types were most abundant; mainly fragmented and irregular shape.
Conclusions: This is believed to be the first evidence of MP contamination in archaeological sediment (or soil) samples with polymers and size ranges measured and while accounting for procedural blanks. These results support the phenomenon of transport of MPs within archaeological stratigraphy, and the characterisation of types, shapes and size ranges identified therein. Through contamination, MPs may compromise the scientific value of archaeological deposits, and environmental proxies suspended within significant sediment, and as such represent a new consideration in the dynamism of, as well as arguments for preserving, archaeological deposits in situ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.169941 | DOI Listing |
An experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.
View Article and Find Full Text PDFMar Environ Res
January 2025
School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.
The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.
View Article and Find Full Text PDFThis case study of Kongsfjorden, western coastal Svalbard, provides insights on how freshwater runoff from marine- and land-terminating glaciers influences the biogeochemical cycles and distribution patterns of carbon, nutrients, and trace elements in an Arctic fjord system. We collected samples from the water column at stations along the fjord axis and proglacial river catchments, and analyzed concentrations of dissolved trace elements, together with dissolved nutrients, as well as alkalinity and dissolved inorganic carbon. Statistical tools were applied to identify and quantify biogeochemical processes within the fjord that govern the constituent distributions.
View Article and Find Full Text PDFClin Nephrol Case Stud
December 2024
Nephrology Center and the Okinaka Memorial Institute for Medical Research.
A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!