Short-circuited electrodes, in combination with dark fermentation, were evaluated in a biohydrogen production process. The system is based on an innovative design of a non-compartmented electromicrobial bioreactor with a conductive tubular membrane as cathode and a graphite felt as anode. In particular, the electrode specialization occurred when the bioreactor was inoculated with manure as the whole medium and when a vacuum was applied in the tubular membrane, for allowing continuous extraction of gaseous species (H, CH, CO) from the bioreactor. This specialization of the electrodes as anode and cathode was further confirmed by microbial ecology analysis of biofilms and by cyclic voltammetry measurements. In these experimental conditions, the potential of the electrochemical system (short-circuited electrodes) reached values as low as -320 mV vs. SHE, associated with a significant bioH production. Moreover, a higher bioH production occurred and a potential of the electrochemical system as low as -429 mV vs SHE was temporarily observed, when additional heat treatments of the whole manure were applied in order to remove methanogen microorganisms (i.e., hydrogen consumers). In the bioreactor, the higher production of bioH would be promoted by electrofermentation from the current flow observed between short-circuited anode and cathode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2023.108631 | DOI Listing |
Materials (Basel)
January 2025
ABB Corporate Technology Center, 13A Starowislna Str., 31-038 Krakow, Poland.
In this study, it is shown that an efficient organic optocoupler (OPC) can be fabricated using commercially available and solution-processable organic semiconductors. The transmitter is a single-active-layer organic light-emitting diode (OLED) made from a well-known polyparavinylene derivative, Super Yellow. The receiver is an organic light-emitting diode (OLSD) with a single active layer consisting of a mixture of the polymer donor PTB7-Th and the low-molecular-weight acceptor ITIC; the receiver operates without an applied reverse voltage.
View Article and Find Full Text PDFBioelectrochemistry
June 2024
Université de Lorraine, CNRS, LRGP, 54000 Nancy, France. Electronic address:
Short-circuited electrodes, in combination with dark fermentation, were evaluated in a biohydrogen production process. The system is based on an innovative design of a non-compartmented electromicrobial bioreactor with a conductive tubular membrane as cathode and a graphite felt as anode. In particular, the electrode specialization occurred when the bioreactor was inoculated with manure as the whole medium and when a vacuum was applied in the tubular membrane, for allowing continuous extraction of gaseous species (H, CH, CO) from the bioreactor.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2023
Department of Environmental Engineering, Laboratory of Electrochemistry and Energy Storage; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, China.
Excessive discharge of ammonia nitrogen would deteriorate water quality. In this work, we designed an innovative microfluidic electrochemical nitrogen-removal reactor (MENR) based on a short-circuited ammonia-air microfluidic fuel cell (MFC). The MENR utilizes the laminar characteristics of two flows (an anolyte containing nitrogen-rich wastewater and a catholyte of acid electrolyte solution) in a microchannel to establish an efficient reactor system.
View Article and Find Full Text PDFMaterials (Basel)
February 2023
National Innovation Institute of Additive Manufacturing, Xi'an 710300, China.
This study developed an experimental system based on Joule heat of sliding-pressure additive manufacturing (SP-JHAM), and Joule heat was used for the first time to accomplish high-quality single-layer printing. The roller wire substrate is short-circuited, and Joule heat is generated to melt the wire when the current passes through. Through the self-lapping experimental platform, single-factor experiments were designed to study the effects of power supply current, electrode pressure, contact length on the surface morphology and cross-section geometric characteristics of the single-pass printing layer.
View Article and Find Full Text PDFBioelectrochemistry
February 2023
Innovative Center for Eco Energy Technologies, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria; Department of Chemistry, South-West University, Blagoevgrad, Bulgaria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!