Neonicotinoids, the fastest-growing class of insecticides, have posed a multi-media residue problem with adverse effects on environment, biodiversity and human health. Herein, covalent organic framework-sodium alginate-Ca-polyacrylic acid composite beads (CACPs), facilely prepared at room temperature, were used in convenient dispersive solid-phase extraction (dSPE) and combined with high-performance liquid chromatography (HPLC) for the detection of five neonicotinoid insecticides (thiamethoxam, acetamiprid, dinotefuran, clothianidin, imidacloprid). CACPs can be completely separated within 1 min without centrifugation. After seven adsorption/desorption cycles, it maintained high extraction efficiencies (>90%). The developed method exhibited a wide linear range (0.01 ∼ 10 μg mL), low limits of detection (LODs, 0.0028 ∼ 0.0031 mg kg), and good repeatability (RSD ≤ 8.11%, n = 3). Moreover, it was applied to the determination of five neonicotinoids in fruit and vegetables (peach, pear, lettuce, cucumber, tomato), and recoveries ranged from 73.6% to 116.2%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.138357DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
organic framework-sodium
8
framework-sodium alginate-ca-polyacrylic
8
alginate-ca-polyacrylic acid
8
acid composite
8
composite beads
8
convenient dispersive
8
dispersive solid-phase
8
solid-phase extraction
8
neonicotinoid insecticides
8

Similar Publications

Development of a reliable tool to detect hydrogen peroxide (HO) and rutin in food-derived products and bioactive flavonoids is essential for food safety. Nevertheless, food/drug-based real samples are complex matrices that affect the sensor's specificity and sensitivity. For this purpose, we developed a simple electrochemical detection platform using covalent organic framework‑silver nanoparticles (COF-AgNPs).

View Article and Find Full Text PDF

A novel approach for determining the elemental content of organic matter through thermal gravimetric analysis coupled online with a mass spectrometer (TG-MS) is disclosed. This method not only yields results equivalent to ASTM analysis but also provides insight into the covalent bond structure within the sample. The principle of this technique consists of the combustion of organic matter in an oxygen-enriched environment within the thermogravimetric (TG) system.

View Article and Find Full Text PDF

Short-chain fatty acid ethyl esters (SFAEEs) are critical aroma compounds in Baijiu, and their wider concentration range can lead to differences in the quality grade of Baijiu. Efficiently designing an SFAEEs adsorbent before instrument analysis remains challenging. In this work, nine functionalized covalent organic frameworks (COFs) with different postmodification groups were designed for targeting SFAEEs.

View Article and Find Full Text PDF

Covalent organic framework-based solid phase microextraction coupled with electrospray ionization mass spectrometry for the quantitative assessment of abnormal bile acids by triclosan exposure in mice.

Talanta

December 2024

State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China. Electronic address:

Bile acids, a representative diagnostic indicator of liver function, are used to visualize the extent of liver injury. Numerous studies have shown that triclosan (TCS) exposure leads to abnormal bile acid metabolism. As a result, there is a requirement to develop a fast and smart means to quantitatively monitor abnormal bile acids from exposure to triclosan in bio-sample.

View Article and Find Full Text PDF

Hydrophilic/hydrophobic heterojunctions for enhanced photocatalytic hydrogen evolution via gas release dynamics.

J Colloid Interface Sci

December 2024

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin 150001, PR China. Electronic address:

Covalent-organic frameworks (COFs), characterized by their exceptional light absorption and ordered architecture, have emerged as potential candidates for photocatalytic hydrogen production. In this work, we discovered that the incorporation of fluorine into the sub-nanocavity of azine-linked COF (TF-COF) not only augments its hydrophobicity but also strengthens the interaction between Pt cocatalysts and COFs. In an effort to enhance photocatalytic water splitting efficiency, we integrated the hydrophobic TF-COF with the hydrophilic carbon nitride (CN) to construct a hydrophilic/hydrophobic heterojunction (CTF-x heterojunction).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!