Mercury (Hg) is among the most concerned contaminants in the world due to its high toxicity, prevalent existence in the environments, and bioaccumulation via food chain. Methylmercury (MeHg) is the major form of Hg that accumulates along the food chain and poses threat to humans and wild life. Photodegradation is the dominant process that MeHg is eliminated from freshwater system and upper ocean. The formation of MeHg-dissolved organic matter (DOM) complexes and a variety of free radicals (FR)/reactive oxygen species (ROS) have been previously proposed to be involved in MeHg photodegradation. However, most of these studies were conducted in freshwater, and the mechanism of MeHg photodegradation in seawater remains unclear. In this study, the main pathways of MeHg photodegradation in the seawater of Yellow Sea (YS) and East China Sea (ECS) were investigated using FR/ ROS scavenger addition and DOM competing-ligand addition techniques. The results showed that direct photodegradation of MeHg-DOM complexes is the major pathway of MeHg photodegradation in the YS and ECS, while indirect photolysis of MeHg by hydroxyl radical (·OH) also plays a certain role at some sites. MeHg photodegradation was found to be mainly induced by ultraviolet (UV) light rather than visible light in YS and ECS seawater, and the contribution of UV-B was higher than UV-A which was opposite to that previously reported in freshwater. The energy for breaking the bond of CHg in MeHg-Cl complexes formed in seawater is higher than that in MeHg-DOM complexes and this may cause the relatively greater contribution of UV-B with higher energy to MeHg photodegradation in seawater. In addition, MeHg photodegradation in various fractions of natural DOM with different molecular weights, hydrophilicity/hydrophobicity and acid-base was tested. MeHg photodegradation rates (k) varied in these fractions and k in high molecular weight DOM and hydrophobic Acid (HOA) fractions were faster than that in the other fractions. A significantly positive correlation was observed between k and thiol concentrations while there was no significant correlation between k and other measured parameters representing the composition of DOM (specific UV absorbance at 254 nm (SUVA), spectral slope (SR), chromophoric dissolved organic matter (CDOM), humification index (HIX), biological index (BIX) and fluorescent components). These results indicate that thiol may be the key functional group in DOM affecting the photodegradation of MeHg in the YS and ECS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!