Insight into the stacking effect on shifted patterns of bilayer phosphorene: a comprehensive first-principles study.

Nanotechnology

Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292, United States of America.

Published: January 2024

It is crucial to deeply understand how the interlayer interaction acts on controlling the structural and electronic properties of shifted patterns of bilayer phosphorene. A comprehensive first-principles study on the bilayer phosphorene through relative translation along different directions has revealed that there is a direct correlation between the potential energy surface and the interlayer equilibrium distance. The shorter the interlayer distance, the lower the potential energy surface. The shifted patterns with the most stable state, the metastable state, and the transition state (with energy barrier of ∼1.3 meV/atom) were found associated with the AB, the A, and the TS stacking configurations, respectively. The high energy barriers, on the other hand, are ∼9.3 meV/atom at the AA stacking configuration along the zigzag pathway, ∼5.3 meV/atom at the AB' stacking configuration along the armchair pathway, and ∼11.2 meV/atom at the AA' stacking configuration along the diagonal pathway, respectively. The character of electronic bandgap with respect to the shifting shows an anisotropic behavior (with the value of 0.69-1.22 eV). A transition from the indirect to the direct bandgap occurs under the shifting, implying a tunable bandgap by stacking engineering. Furthermore, the orbital hybridization at the interfacial region induces a redistribution of the net charge (∼0.002-0.011) associated with the relative shifting between layers, leading to a strong polarization with stripe-like electron depletion near the lone pairs and accumulation in the middle of the interfacial region. It is expected that such interesting findings will provide a fundamental reference to deeply understand and analyze the complex local structural and electronic properties of twisted bilayer phosphorene and will make the shifted patterns of bilayer phosphorene promising for nanoelectronics as versatile shiftronics materials.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad1d14DOI Listing

Publication Analysis

Top Keywords

bilayer phosphorene
20
shifted patterns
16
patterns bilayer
12
stacking configuration
12
phosphorene comprehensive
8
comprehensive first-principles
8
first-principles study
8
deeply understand
8
structural electronic
8
electronic properties
8

Similar Publications

Fano resonances in gated phosphorene junctions.

J Phys Condens Matter

October 2024

Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuito Marie Curie S/N, Parque de Ciencia y Tecnología QUANTUM Ciudad del Conocimiento, 98160 Zacatecas, Zacatecas, Mexico.

Fano resonances appear in plenty of physical phenomena due to the interference phenomena of a continuum spectrum and discrete states. In gated bilayer graphene junctions, the chiral matching at oblique incidence between the spectrum of electron states outside the electrostatic barrier and hole bound states inside it gives rise to an asymmetric line shape in the transmission as a function of the energy or Fano resonance. Here, we show that Fano resonances are also possible in gated phosphorene junctions along the zigzag direction.

View Article and Find Full Text PDF

Constructing Z-scheme heterojunction photocatalysts with high solar-to-hydrogen (STH) efficiency is a practical alternative to produce clean and recyclable hydrogen energy on a large scale. This paper presents the design of stable Z-scheme blue phosphorene (BlueP)/γ-SnS heterostructures with excellent photocatalytic activities by applying strains. The first-principles calculations show that the BlueP/γ-SnS heterobilayer is a type-I heterojunction with an indirect bandgap of 1.

View Article and Find Full Text PDF

Electrostatic Gating of Phosphorene Polymorphs.

J Phys Chem C Nanomater Interfaces

February 2024

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona,C/Martí i Franquès 1, 08028 Barcelona, Spain.

The ability to directly monitor the states of electrons in modern field-effect transistors (FETs) could transform our understanding of the physics and improve the function of related devices. In particular, phosphorene allotropes present a fertile landscape for the development of high-performance FETs. Using density functional theory-based methods, we have systematically investigated the influence of electrostatic gating on the structures, stabilities, and fundamental electronic properties of pristine and carbon-doped monolayer (bilayer) phosphorene allotropes.

View Article and Find Full Text PDF

Insight into the stacking effect on shifted patterns of bilayer phosphorene: a comprehensive first-principles study.

Nanotechnology

January 2024

Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292, United States of America.

It is crucial to deeply understand how the interlayer interaction acts on controlling the structural and electronic properties of shifted patterns of bilayer phosphorene. A comprehensive first-principles study on the bilayer phosphorene through relative translation along different directions has revealed that there is a direct correlation between the potential energy surface and the interlayer equilibrium distance. The shorter the interlayer distance, the lower the potential energy surface.

View Article and Find Full Text PDF

Bilayer and Trilayer CN/Blue-Phosphorene Heterostructures as Potential Anode Materials for Potassium-Ion Batteries.

ACS Omega

December 2023

Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.

Two-dimensional (2D) van der Waals heterostructures outperform conventional anode materials for postlithium-ion batteries in terms of mechanical, thermal, and electrochemical properties. This study systemically investigates the performance of bilayer and trilayer CN/blue phosphorene (CN/BlueP) heterostructures as anode materials for potassium-ion batteries (KIBs) using first-principles density functional theory calculations. This study reveals that the adsorption and diffusion of K ions on bilayer and trilayer CN/BlueP heterostructures are markedly superior to those of their monolayer counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!