Aiming at the operation optimization of the wastewater treatment process (WWTP) with nonstationary time-varying dynamics and complex multiconstraint, this article proposes a novel adaptive constraint penalty decomposed multiobjective evolutionary algorithm with synthetical distance (SD)-based cross-generation crossover. First, the concept of spatial SD is presented to comprehensively evaluate the similarity of individual solutions from two aspects of distance and angle, and the individual information between two adjacent generations is used to enhance the diversity of individuals and accelerate the convergence of the algorithm. Second, aiming at the complex multiconstraint during the operation optimization of WWTP, an adaptive penalty algorithm is further adopted to punish the individual solutions that violate the constraints, so as to improve the handling efficiency and success rate of constraints. Furthermore, in view of the time-varying dynamics of actual WWTP, a recursive bilinear subspace identification method based on sliding window is adopted to establish the optimization models as well as the constraint models with self-learning parameter, which provides accurate model guarantee for high-performance multiobjective operation optimization. Finally, the effectiveness, superiority, and practicability of the proposed method are verified through test function experiments as well as operation optimization control experiments of WWTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2023.3341982 | DOI Listing |
J Surg Educ
January 2025
Washington University of St. Louis, Department of Orthopaedic Surgery, St. Louis, Missouri.
Objective: Orthopedic residents are tasked with rapidly acquiring clinical and surgical skills, especially during their PGY-1 year. However, resource constraints and other factors frequently cause skills training to fall short of established guidelines. We aimed to design and evaluate a cross-institutional, month-long curriculum aimed at pooling resources to optimize training.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFJ Neurosurg
January 2025
Departments of1Neurological Surgery.
Objective: Tumor consistency, or fibrosity, affects the ability to optimally resect meningiomas, especially with recent trends evolving toward minimally invasive approaches. The authors' team previously validated a practical 5-point scale for intraoperative grading of meningioma consistency. The impact of meningioma consistency on surgical management and outcomes, however, has yet to be explored.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
1Neuroscience Institute, Carolina Neurosurgery & Spine Associates, Carolinas Healthcare System, Charlotte, North Carolina.
Objective: Cervical spondylotic myelopathy (CSM) shows varying levels of improvement after surgical treatment. While some patients improve soon after surgery, others may take months to years to show any signs of improvement. The goal of this study was to evaluate postoperative improvement, patient-reported outcomes, and patient satisfaction up to 2 years after surgical treatment for CSM, which will help optimize the current treatment strategies and effectively manage patient expectations.
View Article and Find Full Text PDFOptom Vis Sci
January 2025
Johnson & Johnson MedTech (Vision), Irvine, California.
Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.
Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!