Hierarchical Self-Assembly of Curved Aromatics: From Donor-Acceptor Porphyrins to Triply Periodic Minimal Surfaces.

Angew Chem Int Ed Engl

Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland.

Published: February 2024

A saddle-shaped π-extended zinc porphyrin containing a peripheral pyridyl ligand undergoes quantitative self-assembly into a cyclic trimer. The trimer has a prismatic structure with negatively curved side walls, which promote the formation of supramolecular organic frameworks stabilized by dispersion interactions. The first framework type, UWr-1, has the npo topology, with a hexagonal structure analogous to the Schwartz H triply periodic minimal surface. Co-crystallization of the trimer with either C and C produces the isomorphous cubic UWr-2 and UWr-3 phases, characterized by the ctn network topology and a structural relationship to the Fischer-Koch minimal surface S. All three phases contain complex labyrinths of solvent-filled channels, corresponding to very large probe-accessible volumes (68 % to 76 %). The UWr-2 network could be partly desolvated while retaining its long range dimensional order, indicating remarkable strength of the dispersion interactions in the crystal. A theoretical analysis of noncovalent interactions shows the role of geometrical matching between the negatively curved porphyrin units and positively curved fullerenes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202316243DOI Listing

Publication Analysis

Top Keywords

triply periodic
8
periodic minimal
8
negatively curved
8
dispersion interactions
8
minimal surface
8
hierarchical self-assembly
4
curved
4
self-assembly curved
4
curved aromatics
4
aromatics donor-acceptor
4

Similar Publications

Bone transplantation ranks second worldwide among tissue prosthesis surgeries. Currently, one of the most promising approaches is regenerative medicine, which involves tissue engineering based on polymer scaffolds with biodegradable properties. Once implanted, scaffolds interact directly with the surrounding tissues and in a fairly aggressive environment, which causes biodegradation of the scaffold material.

View Article and Find Full Text PDF

Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.

View Article and Find Full Text PDF

Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.

View Article and Find Full Text PDF

3d-printed sacral reconstruction prosthesis from multiscale topology optimization: A comprehensive numerical assessment of mechanical stability.

Comput Biol Med

December 2024

Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand; OsseoLabs Co. Ltd., Bangkok, 10400, Thailand. Electronic address:

Sacral chordoma, an invasive tumor, necessitates surgical removal of the tumor and the affected region of the sacrum, disrupting the spinopelvic connection. Conventional reconstruction methods, relying on rod and screw systems, often face challenges such as rod failure, sub-optimal stability, and limited osseointegration. This study proposes a novel design for a porous-based sacral reconstruction prosthesis.

View Article and Find Full Text PDF

Developing porous hip implants implementing topology optimization based on the bone remodelling model and fatigue failure.

J Mech Behav Biomed Mater

December 2024

Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; School of Mechanical Engineering, Technological University Dublin, Dublin, Ireland.

Article Synopsis
  • Total hip arthroplasty (THA) is a standard surgical procedure for hip joint replacement, but it can cause complications like stress shielding and cortical hypertrophy due to mechanical mismatches between solid implants and bone.
  • This study aims to create porous implants with adjustable mechanical properties using topology optimization, which may better integrate with bone tissue and reduce complications associated with solid implants.
  • Finite element analyses indicated that using porous implants instead of solid ones can enhance stress distribution in healthy bones, suggesting that optimized porous designs could significantly improve bone health by decreasing stress shielding effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!