A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inter-fractional portability of deep learning models for lung target tracking on cine imaging acquired in MRI-guided radiotherapy. | LitMetric

MRI-guided radiotherapy systems enable beam gating by tracking the target on planar, two-dimensional cine images acquired during treatment. This study aims to evaluate how deep-learning (DL) models for target tracking that are trained on data from one fraction can be translated to subsequent fractions. Cine images were acquired for six patients treated on an MRI-guided radiotherapy platform (MRIdian, Viewray Inc.) with an onboard 0.35 T MRI scanner. Three DL models (U-net, attention U-net and nested U-net) for target tracking were trained using two training strategies: (1) uniform training using data obtained only from the first fraction with testing performed on data from subsequent fractions and (2) adaptive training in which training was updated each fraction by adding 20 samples from the current fraction with testing performed on the remaining images from that fraction. Tracking performance was compared between algorithms, models and training strategies by evaluating the Dice similarity coefficient (DSC) and 95% Hausdorff Distance (HD95) between automatically generated and manually specified contours. The mean DSC for all six patients in comparing manual contours and contours generated by the onboard algorithm (OBT) were 0.68 ± 0.16. Compared to OBT, the DSC values improved 17.0 - 19.3% for the three DL models with uniform training, and 24.7 - 25.7% for the models based on adaptive training. The HD95 values improved 50.6 - 54.5% for the models based on adaptive training. DL-based techniques achieved better tracking performance than the onboard, registration-based tracking approach. DL-based tracking performance improved when implementing an adaptive strategy that augments training data fraction-by-fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-023-01371-zDOI Listing

Publication Analysis

Top Keywords

target tracking
12
mri-guided radiotherapy
12
adaptive training
12
tracking performance
12
training
9
tracking
8
cine images
8
images acquired
8
tracking trained
8
data fraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!