The mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal. Sialyl Lewis X (sLeX) is a sialylated and fucosylated tetrasaccharide with essential roles in cell-to-cell recognition processes. Pathological conditions and pro-inflammatory mediators can up-regulate sLeX expression on cell surfaces, which has important consequences in intracellular signalling and immune function. Here, we investigated the expression of this glycan using in vivo and in vitro models of PD. We show the activation of deleterious glycation-related pathways in mouse striatum upon treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin-based model of PD. Importantly, our results show that MPTP triggers the presentation of more proteins decorated with sLeX in mouse cortex and striatum in a time-dependent manner, as well as increased mRNA expression of its rate-limiting enzyme fucosyltransferase 7. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. Although the underlying mechanism that drives increased sLeX epitopes, the nature of the protein scaffolds and their functional importance in PD remain unknown, our data suggest for the first time that sLeX in the brain may have a role in neuronal signalling and immunomodulation in pathological conditions. KEY MESSAGES: MPTP triggers the presentation of proteins decorated with sLeX in mouse brain. MPTP triggers the expression of sLeX rate-limiting enzyme FUT 7 in striatum. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. sLeX in the brain may have a role in neuronal signalling and immunomodulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879467PMC
http://dx.doi.org/10.1007/s00109-023-02415-3DOI Listing

Publication Analysis

Top Keywords

mptp triggers
12
slex
10
sialyl lewis
8
parkinson's disease
8
pathological conditions
8
triggers presentation
8
presentation proteins
8
proteins decorated
8
decorated slex
8
slex mouse
8

Similar Publications

Purpose: Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia.

View Article and Find Full Text PDF

17β-estradiol alleviated ferroptotic neuroinflammation by suppressing ATF4 in mouse model of Parkinson's disease.

Cell Death Discov

December 2024

Department of Histoembryology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China.

Neuroinflammation induced by activation of microglial is a vital contributor to progression of Parkinson's disease (PD), emerging evidences suggested that ferroptosis played a pivotal role in microglial activation and subsequent dopaminergic neuron loss. Nevertheless, the fundamental pathogenesis of that ferroptosis contributes to PD is not yet sufficiently understood. Based on GEO dataset, ferroptosis related genes were found to be enriched in PD patients and MPTP mouse model of PD, among them, ATF4 was found to be dramatically differentially expressed.

View Article and Find Full Text PDF

The mitochondrial permeability transition pore (mPTP) is implicated in cardiac ischemia-reperfusion (I/R) injury. During I/R, elevated mitochondrial Ca triggers mPTP opening, leading to necrotic cell death. Although nonessential regulators of this pore are characterized, the molecular identity of the pore-forming component remains elusive.

View Article and Find Full Text PDF

Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a major threat in the treatment of bacterial infection, and immunotherapy in a non-antibiotic-dependent manner is an effective way to overcome CRAB infection. However, the role of the innate immune response in CRAB infection is poorly understood. Here, it is reported that CRAB infection induced a cytosolic DNA-sensing signaling pathway and significant IFN-β production in mice post-CRAB infection.

View Article and Find Full Text PDF

Myocardial dysfunction is a decisive factor of death in septic patients. Cyclophilin F (PPIF) is a major component of the mitochondrial permeability transition pore (mPTP) and acts as a critical mPTP sensitizer triggering mPTP opening. In sepsis, decreased NAD impairs Sirtuin 3 function, which may prevent PPIF de-acetylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!