Fibroblastic rheumatism: a diagnostic challenge.

Ital J Dermatol Venerol

Department of Clinical Dermatology, Vita-Salute San Raffaele University, Milan, Italy.

Published: February 2024

Download full-text PDF

Source
http://dx.doi.org/10.23736/S2784-8671.23.07724-1DOI Listing

Publication Analysis

Top Keywords

fibroblastic rheumatism
4
rheumatism diagnostic
4
diagnostic challenge
4
fibroblastic
1
diagnostic
1
challenge
1

Similar Publications

Objective: Fibroblast-like synoviocytes (FLS) are key players in rheumatoid arthritis (RA) by resisting apoptosis via increased autophagy. Elevated synovial aquaporin 1 (AQP1) affects RA FLS behaviors, but its relationship with FLS autophagy is unclear. We aim to clarify that silencing AQP1 inhibits autophagy to exert its anti-RA effects.

View Article and Find Full Text PDF

Understanding how inflammatory cytokines influence profibrogenic wound healing responses in fibroblasts is important for understanding the pathogenesis of fibrosis. TNF-α and IL-13 are key cytokines in Th1 and Th2 immune responses, respectively, while TGF-β1 is the principal pro-fibrotic mediator. We show that 12-day fibroblast culture with TNF-α or IL-13 induces fibrogenesis, marked by progressively increasing type III and VI collagen formation, and that TGF-β1 co-stimulation amplifies these effects.

View Article and Find Full Text PDF

Objective: The inflammatory responses from synovial fibroblasts and macrophages and the mitochondrial dysfunction in chondrocytes lead to oxidative stress, disrupt extracellular matrix (ECM) homeostasis, and accelerate the deterioration process of articular cartilage in osteoarthritis (OA). In recent years, it has been proposed that mesenchymal stromal cells (MSC) transfer their functional mitochondria to damaged cells in response to cellular stress, becoming one of the mechanisms underpinning their therapeutic effects. Therefore, we hypothesize that a novel cell-free treatment for OA could involve direct mitochondria transplantation, restoring both cellular and mitochondrial homeostasis.

View Article and Find Full Text PDF

Molecular and spatial analysis of tertiary lymphoid structures in Sjogren's syndrome.

Nat Commun

January 2025

Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK.

Tertiary lymphoid structures play important roles in autoimmune and non-autoimmune conditions. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, the cellular sources and temporal and spatial relationship remain unknown. Here we use combine single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren's disease and Sicca Syndrome, with ex-vivo functional studies to construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures.

View Article and Find Full Text PDF

Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!