The prevalence of oral squamous cell carcinoma (OSCC) is increasing worldwide mainly due to poor oral hygiene and unrestricted lifestyle. Advanced-stage OSCC is associated with poor prognosis and a 5-year survival rate of only 30%-50%. The present study was designed to investigate the anticancer effect and mode of action of Glycyrrhiza-derived semilicoisoflavone B (SFB) in 5-fluorourasil (5FU)-resistant human OSCC cell lines. The study findings revealed that SFB significantly reduces OSCC cell viability and colony formation ability by arresting cell cycle at the G2/M and S phases and reducing the expressions of key cell cycle regulators including cyclin A, cyclin B, CDC2, and CDK2. The compound caused a significant induction in the percentage of nuclear condensation and apoptotic cells in OSCC. Regarding pro-apoptotic mode of action, SFB was found to increase Fas-associated death domain and death receptor 5 expressions and reduce decoy receptor 2 expression, indicating involvement of extrinsic pathway. Moreover, SFB was found to increase pro-apoptotic Bim expression and reduce anti-apoptotic Bcl-2 and Bcl-xL expressions, indicating involvement of intrinsic pathway. Moreover, SFB-mediated induction in cleaved caspases 3, 8, and 9 and cleaved poly(ADP-ribose) polymerase confirmed the induction of caspase-mediated apoptotic pathways. Regarding upstream signaling pathway, SFB was found to reduce extracellular signal regulated kinase 1/2 (ERK) phosphorylation to execute its pro-apoptotic activity. The Human Apoptotic Array findings revealed that SFB suppresses claspin expression, which in turn caused reduced phosphorylation of ATR, checkpoint kinase 1 (Chk1), Wee1, and CDC25C, indicating disruption of ATR-Chk1 signaling pathway by SFB. Taken together, these findings indicate that SFB acts as a potent anticancer compound against 5FU-resistant OSCC by modulating mitogen-activated protein kinase (MAPK) and ATR-Chk1 signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.24107DOI Listing

Publication Analysis

Top Keywords

atr-chk1 signaling
12
pathway sfb
12
signaling pathways
8
mode action
8
sfb
8
oscc cell
8
findings revealed
8
revealed sfb
8
cell cycle
8
sfb increase
8

Similar Publications

ATM/ATR-Mediated DNA Damage Response Facilitates SARS-CoV-2 Spike Protein-Induced Syncytium Formation.

J Med Virol

January 2025

Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.

View Article and Find Full Text PDF

Molecular mechanisms restoring olaparib efficacy through ATR/CHK1 pathway inhibition in olaparib-resistant BRCA1/2 ovarian cancer models.

Biochim Biophys Acta Mol Basis Dis

February 2025

Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland. Electronic address:

Article Synopsis
  • Olaparib resistance in ovarian cancer patients calls for new strategies, leading to the creation of a patient-derived xenograft model to study this issue.
  • In experiments, olaparib-resistant tumors were treated with olaparib alone, or combined with ATR and CHK1 inhibitors, revealing that these combinations effectively hindered tumor growth and altered key molecular signaling pathways.
  • The study enhances our understanding of how to combat olaparib resistance in high-grade serous ovarian cancer with BRCA1/2 mutations, suggesting that targeting the ATR/CHK1 pathways could improve treatment outcomes for patients who are initially unresponsive to olaparib.
View Article and Find Full Text PDF
Article Synopsis
  • Oncogenic mutations like those in KRAS cause transcription-replication conflicts (TRCs) in pancreatic ductal adenocarcinoma (PDAC), making them more common in these cancer cells than in other tumors or normal cells.
  • The study identifies base-excision repair (BER) factors as key regulators of TRCs, with BER inhibitors increasing TRCs by disrupting RNA polymerase II and R-loop dynamics.
  • Combining ATR and BER inhibitors shows promise in enhancing DNA damage and reducing PDAC cell growth, emphasizing the therapeutic potential of targeting these pathways in cancer treatment.
View Article and Find Full Text PDF

Cigarette smoke, a complex mixture produced by tobacco combustion, contains a variety of carcinogens and can trigger DNA damage. Overactivation of c-MET, a receptor tyrosine kinase, may cause cancer and cellular DNA damage, but the underlying mechanisms are unknown. In this work, we investigated the mechanisms of cigarette smoke extract (CSE) induced malignant transformation and DNA damage in human bronchial epithelial cells (BEAS-2B).

View Article and Find Full Text PDF

Oleandrin enhances radiotherapy sensitivity in lung cancer by inhibiting the ATM/ATR-mediated DNA damage response.

Phytother Res

August 2024

Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China.

Despite active clinical trials on the use of Oleandrin alone or in combination with other drugs for the treatment of solid tumors, the potential synergistic effect of Oleandrin with radiotherapy remains unknown. This study reveals a new mechanism by which Oleandrin targets ATM and ATR kinase-mediated radiosensitization in lung cancer. Various assays, including clonogenic, Comet, immunofluorescence staining, apoptosis and Cell cycle assays, were conducted to evaluate the impact of oleandrin on radiation-induced double-strand break repair and cell cycle distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!