Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology.

Nat Prod Rep

School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.

Published: June 2024

AI Article Synopsis

  • Nucleoside analogues are key pharmaceuticals used in cancer and viral infection treatment, but none are currently used for bacterial infections, despite some having antibiotic properties.
  • The rise in antibiotic resistance creates an urgent need for new antibiotics, and natural product-derived nucleoside analogues could offer new therapeutic options.
  • This overview highlights recent advancements from 2019 to 2023 in developing natural purine nucleoside antibiotics by combining synthetic chemistry, biosynthetic knowledge, and recombinant enzyme applications.

Article Abstract

Covering: 2019 to 2023Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188666PMC
http://dx.doi.org/10.1039/d3np00051fDOI Listing

Publication Analysis

Top Keywords

nucleoside analogues
12
purine nucleoside
8
nucleoside antibiotics
8
antibiotics synthetic
4
synthetic advances
4
advances harnessing
4
harnessing chemistry
4
chemistry biology
4
biology covering
4
covering 2019
4

Similar Publications

The norepinephrine transporter (NET) is a key regulator of noradrenergic neurotransmission and homeostasis, regulating the norepinephrine levels in the brain and peripheral tissues. hNET is a major target in neuropsychiatric disorders such as major depressive disorder, autonomic dysfunction, and attention deficit hyperactivity disorder (ADHD). The human norepinephrine transporter gene (, ) contains 504 missense single nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Impact of NPK fertilization on the metabolomic profile and nutritional quality of Portulaca oleracea L. using nuclear magnetic resonance analysis.

Plant Physiol Biochem

December 2024

Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, Ciudad de México, Mexico.

Purslane is a plant with high nutritional content that is mainly produced in the central part of Mexico. The nutritional content of purslane depends on various factors such as climatic and soil conditions, phenology, and fertilization. This article describes the H NMR metabolomics profiling of purslane in relation to fertilization at two harvest stages: C and C (27 and 42 days after emergence).

View Article and Find Full Text PDF

Non-targeted and targeted detection of hydrophilic compounds in fu brick tea: A study on samples from major Chinese production regions and different processing stages.

Food Chem

December 2024

National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China. Electronic address:

Systematic research is still lacking on the content of hydrophilic compounds in Fu Brick Tea (FBT) from major Chinese production regions and their variation patterns during the processing of FBT. This study utilized optimized non-targeted (UHPLC-Q-Exactive Orbitrap-MS) and targeted (UHPLC-QqQ-MS) metabolomics to analyze 73 FBT samples from six regions of China and 30 samples from different stages of FBT processing. 573 and 74 hydrophilic compounds were respectively relatively and absolutely quantified for the first time.

View Article and Find Full Text PDF

Nucleosides and polysaccharides are the main bioactive ingredients of Cordyceps genus. Nucleosides shows significant differences in different Cordyceps species. However, the differences of polysaccharides have not been decoded.

View Article and Find Full Text PDF

Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!