Background: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM.
Methods: Cardiac-specific conditional knockout of mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ ( c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM.
Results: The cardiac-specific conditional knockout of mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, was identified as the key target gene of SP1. The hypertrophic phenotypes induced by knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs.
Conclusions: Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCRESAHA.123.323272 | DOI Listing |
J Imaging Inform Med
January 2025
Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam.
The diagnosis of knee osteoarthritis is challenging due to its complex nature and various contributing factors. With the advancement of artificial intelligence (AI) technology, some computer vision-based methods have been developed to address this task. However, when applied in practice, these methods encounter numerous challenges.
View Article and Find Full Text PDFActa Cardiol Sin
January 2025
Cardiovascular Center, Taichung Veterans General Hospital, Taichung.
Background: Atrial fibrillation (AF) increases the risks of stroke and mortality. It remains unclear whether rhythm control reduces the risk of stroke in patients with AF concomitant with hypertrophic cardiomyopathy (HCM).
Methods: We identified AF patients with HCM who were ≥ 18 years old in the Taiwan National Health Insurance Database.
Arthrosc Sports Med Rehabil
December 2024
College of Charleston, Charleston, South Carolina, U.S.A.
Purpose: To compare the biomechanics of a drop vertical jump (DVJ) landing task and functional outcomes among patients with anterior cruciate ligament reconstruction (ACLR) with quadriceps tendon (QT) and patellar tendon (PT) autografts.
Methods: Physically active patients who underwent primary ACLR with either a QT or PT autograft were included in this study. All were within 6 months to 2 years after surgery and cleared for return to physical activity.
Egypt Heart J
January 2025
Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria.
Background: Hypertrophic cardiomyopathy (HCM) is a frequently encountered cardiac condition worldwide, often inherited, and characterized by intricate phenotypic and genetic manifestations. The natural progression of HCM is diverse, largely due to mutations in the contractile and relaxation proteins of the heart. These mutations disrupt the normal structure and functioning of the heart muscle, particularly affecting genes that encode proteins involved in the contraction and relaxation of cardiac muscle.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
Obesity factors into hypertrophic cardiomyopathy (HCM)-related risk as a disease modifying environmental factor. Behaviours such as diet and sleep are seldom reported upon in children with HCM. It was our aim to report on these factors in this population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!