Cloud type classification using deep learning with cloud images.

PeerJ Comput Sci

Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Published: January 2024

Clouds play a pivotal role in determining the weather, impacting the daily lives of everyone. The cloud type can offer insights into whether the weather will be sunny or rainy and even serve as a warning for severe and stormy conditions. Classified into ten distinct classes, clouds provide valuable information about both typical and exceptional weather patterns, whether they are short or long-term in nature. This study aims to anticipate cloud formations and classify them based on their shapes and colors, allowing for preemptive measures against potentially hazardous situations. To address this challenge, a solution is proposed using image processing and deep learning technologies to classify cloud images. Several models, including MobileNet V2, Inception V3, EfficientNetV2L, VGG-16, Xception, ConvNeXtSmall, and ResNet-152 V2, were employed for the classification computations. Among them, Xception yielded the best outcome with an impressive accuracy of 97.66%. By integrating artificial intelligence technologies that can accurately detect and classify cloud types into weather forecasting systems, significant improvements in forecast accuracy can be achieved. This research presents an innovative approach to studying clouds, harnessing the power of image processing and deep learning. The ability to classify clouds based on their visual characteristics opens new avenues for enhanced weather prediction and preparedness, ultimately contributing to the overall accuracy and reliability of weather forecasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773838PMC
http://dx.doi.org/10.7717/peerj-cs.1779DOI Listing

Publication Analysis

Top Keywords

deep learning
12
cloud type
8
cloud images
8
image processing
8
processing deep
8
classify cloud
8
cloud
6
weather
6
type classification
4
classification deep
4

Similar Publications

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.

Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.

View Article and Find Full Text PDF

Bruises can affect the appearance and nutritional value of apples and cause economic losses. Therefore, the accurate detection of bruise levels and bruise time of apples is crucial. In this paper, we proposed a method that combines a self-designed multispectral imaging system with deep learning to accurately detect the level and time of bruising on apples.

View Article and Find Full Text PDF

The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!