Silver Nanowires-Based Flexible Gold Electrode Overcoming Interior Impedance of Nanomaterial Electrodes.

Small

College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China.

Published: June 2024

In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202307328DOI Listing

Publication Analysis

Top Keywords

nanomaterial electrodes
20
ethanol electrooxidation
12
electrocatalytic activity
8
peak current
8
acetic acid
8
nanomaterial
5
electrodes
5
agnws
5
silver nanowires-based
4
nanowires-based flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!