Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ascites plays a key role in supporting the metastatic potential of ovarian cancer cells. Shear stress and carry-over of cancer cells by ascites flow support carcinogenesis and metastasis formation. In addition, soluble factors may participate in the procarcinogenic effects of ascites in ovarian cancer. This study aimed to determine the biological effects of cell-free ascites on carcinogenesis in ovarian cancer cells. Cell-free ascites from ovarian cancer patients (ASC) non-selectively induced cell proliferation in multiple models of ovarian cancer and untransformed primary human dermal fibroblasts. Furthermore, ASC induced a Warburg-type rearrangement of cellular metabolism in A2780 ovarian cancer cells characterized by increases in cellular oxygen consumption and glycolytic flux; increases in glycolytic flux were dominant. ASC induced mitochondrial uncoupling and fundamentally reduced fatty acid oxidation. Ascites-elicited effects were uniform among ascites specimens. ASC-elicited transcriptomic changes in A2780 ovarian cancer cells included induction of the TGFβ-ERK/MEK pathway, which plays a key role in inducing cell proliferation and oncometabolism. ASC-induced gene expression changes, as well as the overexpression of members of the TGFβ signaling system, were associated with poor survival in ovarian cancer patients. We provided evidence that the activation of the autocrine/paracrine of TGFβ signaling system may be present in bladder urothelial carcinoma and stomach adenocarcinoma. Database analysis suggests that the TGFβ system may feed forward bladder urothelial carcinoma and stomach adenocarcinoma. Soluble components of ASC support the progression of ovarian cancer. These results suggest that reducing ascites production may play an essential role in the treatment of ovarian cancer by inhibiting the progression and reducing the severity of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226691 | PMC |
http://dx.doi.org/10.1007/s11357-023-01056-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!