Superalkalis (SAs) are exotic clusters having lower ionization energy than alkali atoms, which makes them strong reducing agents. In the quest for the reduction of diatomic molecules (X) such as N, O, and H using Møller-Plesset perturbation theory (MP2), we have studied their interaction with typical superalkalis such as FLi, OLi, and NLi and calculated various parameters of the resulting SA-X complexes. We noticed that the SA-O complex and its isomers possess strong ionic interaction, which leads to the reduction of O to O anion. On the contrary, there are both ionic and covalent interactions in SA-N complexes such that the lowest energy isomers are covalently bonded with no charge transfer from SA. Further, the interaction between SA and H leads to weakly bound complexes, which results in the adsorption of H molecules. The nature of interaction is found to be closely related to the electron affinity of diatomic molecules. These findings might be useful in the study of the activation, reduction, and adsorption of small molecules, which can be further explored for their possible applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230923 | PMC |
http://dx.doi.org/10.1002/open.202300253 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
We present a general theory of quantum chemistry-based atomic momentum spectroscopy (QC-AMS) for predicting electron-atom Compton profiles due to the intramolecular motion of each atom in diatomic, triatomic and polyatomic molecules. The atomic motion is assumed to be decomposable into normal-mode molecular vibrations and molecular rotations, and the latter are treated classically. An accuracy assessment of the general theory is performed through comparisons with the AMS Compton profiles of HD and NO, predicted by the full quantum chemistry-based AMS theory that is precise but can work only for diatomic molecules.
View Article and Find Full Text PDFSurgery
January 2025
Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:
Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.
View Article and Find Full Text PDFJ Mol Model
January 2025
INIFTA, DQT, Sucursal 4, C. C. 16, 1900, La Plata, Argentina.
Quantum mechanics has proved to be suitable for the study of molecular systems. In particular, the Born-Oppenheimer approximation enables one to separate the motions of electrons and nuclei. In the case of diatomic molecules, this approximation leads to the so-called potential-energy function that provides the interaction between the two nuclei.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden.
In this work, we present a non-orthogonal configuration interaction (NOCI) approach to address the rotational corrections in multicomponent quantum chemistry calculations where hydrogen nuclei and electrons are described with orbitals under Hartree-Fock (HF) and density functional theory (DFT) frameworks. The rotational corrections are required in systems such as diatomic (HX) and nonlinear triatomic molecules (HXY), where localized broken-symmetry nuclear orbitals have a lower energy than delocalized orbitals with the correct symmetry. By restoring rotational symmetry with the proposed NOCI approach, we demonstrate significant improvements in proton binding energy predictions at the HF level, with average rotational corrections of 0.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.
Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!