This communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-Ω microstrip feed-lines to these four quarter-mode cavity resonators enables quad-band operation with self-quadruplexing capabilities. The feed lines are organized orthogonally and off-center, which leads to port isolation greater than 32.3 dB. An equivalent network model is developed to validate the proposed antenna. To realize frequency reconfigurability, two microfluidic channels corresponding to each port are created by engraving the bottom surface of the cavity. To create a reconfigurable self-quadruplexing antenna, the channels are either filled with air or dielectric liquids of higher permittivity, so that the design offers independent tunability of the operating frequencies. As a proof of concept, the prototype of a self-quadruplexing tunable antenna is fabricated and validated through measurements. The antenna prototype occupies a footprint area of 0.37λ. The design exhibits frequency tuning ranges of 350 MHz (8.3%), 500 MHz (10.3%), 610 MHz (11.2%), and 845 MHz (14.1%) for the first, second, third, and fourth operating bands, respectively. In all bands and across the entire tuning range, the realized gains of the designed antenna exceed 4.05 dBi. The electromagnetic modeling responses agree extremely well with the measured characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776845PMC
http://dx.doi.org/10.1038/s41598-024-51645-zDOI Listing

Publication Analysis

Top Keywords

self-quadruplexing tunable
12
tunable antenna
12
microfluidically frequency-reconfigurable
8
quarter-mode cavity
8
cavity resonators
8
surface cavity
8
antenna
7
self-quadruplexing
5
cavity
5
frequency-reconfigurable compact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!