A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cortical thickness and white matter microstructure predict freezing of gait development in Parkinson's disease. | LitMetric

The clinical applications of the association of cortical thickness and white matter fiber with freezing of gait (FoG) are limited in patients with Parkinson's disease (PD). In this retrospective study, using white matter fiber from diffusion-weighted imaging and cortical thickness from structural-weighted imaging of magnetic resonance imaging, we investigated whether a machine learning-based model can help assess the risk of FoG at the individual level in patients with PD. Data from the Parkinson's Disease Progression Marker Initiative database were used as the discovery cohort, whereas those from the Fujian Medical University Union Hospital Parkinson's Disease database were used as the external validation cohort. Clinical variables, white matter fiber, and cortical thickness were selected by random forest regression. The selected features were used to train the support vector machine(SVM) learning models. The median area under the receiver operating characteristic curve (AUC) was calculated. Model performance was validated using the external validation cohort. In the discovery cohort, 25 patients with PD were defined as FoG converters (15 men, mean age 62.1 years), whereas 60 were defined as FoG nonconverters (38 men, mean age 58.5 years). In the external validation cohort, 18 patients with PD were defined as FoG converters (8 men, mean age 66.9 years), whereas 37 were defined as FoG nonconverters (21 men, mean age 65.1 years). In the discovery cohort, the model trained with clinical variables, cortical thickness, and white matter fiber exhibited better performance (AUC, 0.67-0.88). More importantly, SVM-radial kernel models trained using random over-sampling examples, incorporating white matter fiber, cortical thickness, and clinical variables exhibited better performance (AUC, 0.88). This model trained using the above mentioned features was successfully validated in an external validation cohort (AUC, 0.91). Furthermore, the following minimal feature sets that were used: fractional anisotropy value and mean diffusivity value for right thalamic radiation, age at baseline, and cortical thickness for left precentral gyrus and right dorsal posterior cingulate gyrus. Therefore, machine learning-based models using white matter fiber and cortical thickness can help predict the risk of FoG conversion at the individual level in patients with PD, with improved performance when combined with clinical variables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776850PMC
http://dx.doi.org/10.1038/s41531-024-00629-xDOI Listing

Publication Analysis

Top Keywords

cortical thickness
32
white matter
28
matter fiber
24
parkinson's disease
16
external validation
16
validation cohort
16
clinical variables
16
defined fog
16
men age
16
thickness white
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!