Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Exosomes released from decidual stromal cells (DSC-exos) play a crucial role in facilitating the epithelial-mesenchymal transition (EMT) of trophoblasts and insufficient trophoblasts EMT are associated with URSA (unexplained recurrent spontaneous abortion). However, the mechanisms underlying DSC-exos inducing EMT is not completely understood.
Methods: DSC-exos of normal pregnant women (N-DSC-exos) and URSA patients (URSA-DSC-exos) were extracted and characterized. Characterization of the isolated DSC-exos was performed using with TEM (transmission electron microscopy), NTA (nanoparticle tracking analysis), and WB (western blot) techniques. Subsequently, these DSC-exos were co-cultured with trophoblasts cell lines (HTR-8/SVneo). The influence of both N-DSC-exos and URSA-DSC-exos on trophoblasts proliferation, invasion and migration, as well as on the expression of EMT-related proteins, was evaluated through a series of assays including CCK8 assays, wound healing assays, transwell assays, and western blot, respectively. Then rescue experiments were performed by β-TrCP knockdown or β-TrCP overexpressing trophoblasts with snail-siRNA transfection or β-TrCP overexpressing Lentivirus infection, respectively. Finally, animal experiments were employed to explore the effect of N-DSC-exos on embryo absorption in mice.
Results: We found increased β-TrCP expression in the villus of URSA patients when compared to the normal pregnant women, alongside reduction in the levels of both snail and N-cadherin within URSA patients. N-DSC-exos can promote the EMT of the trophoblast by inhibiting β-TrCP-mediated ubiquitination and degradation of transcription factor snail. Moreover the capacity to promote EMT was found to be more potent in N-DSC-exos than URSA-DSC-exos. Down-regulation of snail or overexpression of β-TrCP can reverse the effects of N-DSC-exos on trophoblast. Finally, in vivo experiment suggested that N-DSC-exos significantly reduced the embryo resorption rate of spontaneous abortion mouse model.
Conclusions: Our findings indicate that URSA-DSC-exos caused insufficient migration and invasion of trophoblast because of disturbing of β-TrCP-mediated ubiquitination and degradation of EMT transcription factor snail. Elucidating the underlying mechanism of this dysregulation may shed light on the novel pathways through which DSC-exos influence trophoblast function, thereby contributing to our understanding of their role in URSA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775448 | PMC |
http://dx.doi.org/10.1186/s40001-023-01598-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!