Zebrafish xenograft as a tool for the study of colorectal cancer: a review.

Cell Death Dis

Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.

Published: January 2024

Colorectal cancer (CRC) is the second leading cause of cancer-related death, mostly due to metastatic disease and the fact that many patients already show signs of metastasis at the time of first diagnosis. Current CRC therapies negatively impact patients' quality of life and have little to no effect on combating the tumor once the dissemination has started. Danio rerio (zebrafish) is a popular animal model utilized in cancer research. One of its main advantages is the ease of xenograft transplantation due to the fact that zebrafish larvae lack the adaptative immune system, guaranteeing the impossibility of rejection. In this review, we have presented the many works that choose zebrafish xenograft as a tool for the study of CRC, highlighting the methods used as well as the promising new therapeutic molecules that have been identified due to this animal model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776567PMC
http://dx.doi.org/10.1038/s41419-023-06291-0DOI Listing

Publication Analysis

Top Keywords

zebrafish xenograft
8
xenograft tool
8
tool study
8
colorectal cancer
8
animal model
8
zebrafish
4
study colorectal
4
cancer review
4
review colorectal
4
cancer crc
4

Similar Publications

Inhibiting autophagy selectively prunes dysfunctional tumor vessels and optimizes the tumor immune microenvironment.

Theranostics

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.

Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.

View Article and Find Full Text PDF

We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.

View Article and Find Full Text PDF

Neuroblastoma response to RAS-MAPK inhibitors and APR-246 (eprenetapopt) co-treatment is dependent on SLC7A11.

Front Oncol

December 2024

Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Background: We previously demonstrated that APR-246 (eprenetapopt) could be an efficient treatment option against neuroblastoma (NB), the most common pediatric extracranial solid tumor. APR-246's mechanism of action is not completely understood and can differ between cell types. Here we investigate the involvement of well-known oncogenic pathways in NB's response to APR-246.

View Article and Find Full Text PDF

The bony fish Danio rerio (zebrafish) has become one of the important vertebrate model organisms in biomedical cancer research and is used, among other things, for the development of anticancer drugs using xenotransplantation approaches. The ex utero development of zebrafish, optically transparent tissues in the first month of growth, and the immature adaptive immune system during this period greatly facilitate the manipulation of embryos. For highly aggressive cancers where patient survival may be expected to be only a few months, a zebrafish xenograft assay may be the only appropriate method as it requires only four to seven days.

View Article and Find Full Text PDF

Microglia, the brain-resident immune cells, orchestrate neuroinflammatory responses and are crucial in the progression of neurological diseases, including ischemic stroke (IS), which accounts for approximately 85% of all strokes worldwide. Initially deemed detrimental, microglial activation has been shown to perform protective functions in the ischemic brain. Besides their effects on neurons, microglia play a role in promoting post-ischemic angiogenesis, a pivotal step for restoring oxygen and nutrient supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!