Aims: Diabetic cardiomyopathy (DCM) is a major cause of mortality in patients with diabetes, and the potential strategies for treating DCM are insufficient. Melatonin (Mel) has been shown to attenuate DCM, however, the underlying mechanism remains unclear. The role of vascular endothelial growth factor-B (VEGF-B) in DCM is little known. In present study, we aimed to investigate whether Mel alleviated DCM via regulation of VEGF-B and explored its underlying mechanisms.

Methods And Results: We found that Mel significantly alleviated cardiac dysfunction and improved autophagy of cardiomyocytes in type 1 diabetes mellitus (T1DM) induced cardiomyopathy mice. VEGF-B was highly expressed in DCM mice in comparison with normal mice, and its expression was markedly reduced after Mel treatment. Mel treatment diminished the interaction of VEGF-B and Glucose-regulated protein 78 (GRP78) and reduced the interaction of GRP78 and protein kinase RNA -like ER kinase (PERK). Furthermore, Mel increased phosphorylation of PERK and eIF2α, then up-regulated the expression of ATF4. VEGF-B mice imitated the effect of Mel on wild type diabetic mice. Interestingly, injection with Recombinant adeno-associated virus serotype 9 (AAV9)-VEGF-B or administration of GSK2656157 (GSK), an inhibitor of phosphorylated PERK abolished the protective effect of Mel on DCM. Furthermore, rapamycin, an autophagy agonist displayed similar effect with Mel treatment; while 3-Methyladenine (3-MA), an autophagy inhibitor neutralized the effect of Mel on high glucose-treated neonatal rat ventricular myocytes.

Conclusions: These results demonstrated that Mel attenuated DCM via increasing autophagy of cardiomyocytes, and this cardio-protective effect of Mel was dependent on VEGF-B/GRP78/PERK signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777497PMC
http://dx.doi.org/10.1186/s12933-023-02078-xDOI Listing

Publication Analysis

Top Keywords

autophagy cardiomyocytes
12
mel
12
mel treatment
12
diabetic cardiomyopathy
8
increasing autophagy
8
vegf-b/grp78/perk signaling
8
signaling pathway
8
dcm
8
mel alleviated
8
autophagy
5

Similar Publications

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Programmed cardiomyocyte death in myocardial infarction.

Apoptosis

January 2025

National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.

Cardiovascular disease (CVD) is a leading cause of human mortality worldwide, with patients often at high risk of heart failure (HF) in myocardial infarction (MI), a common form of CVD that results in cardiomyocyte death and myocardial necrosis due to inadequate myocardial perfusion. As terminally differentiated cells, cardiomyocytes possess a severely limited capacity for regeneration, and an excess of dead cardiomyocytes will further stress surviving cells, potentially exacerbating to more extensive heart disease. The article focuses on the relationship between programmed cell death (PCD) of cardiomyocytes, including different forms of apoptosis, necrosis, and autophagy, and MI, as well as the potential application of these mechanisms in the treatment of MI.

View Article and Find Full Text PDF

Oxymatrine alleviates ALD-induced cardiac hypertrophy by regulating autophagy via activation Nrf2/SIRT3 signaling pathway.

Phytomedicine

January 2025

The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guiyang City and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), Guizhou Medical University, No.6 Ankang Avenue, Guiyang City and Guian New District, Guizhou 561113, China; The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang City and Guian New District, Guizhou 561113, China. Electronic address:

Background: Cardiac hypertrophy is a prevalent early pathological manifestation in various cardiovascular diseases, lacking effective interventions to impede its progression. Although oxymatrine (OMT) has shown potential benefits for cardiac function, its therapeutic efficacy and mechanism in cardiac hypertrophy remain incompletely understood. Notably, mitochondrial damage and dysregulated autophagy are pivotal pathogenic mechanisms in cardiac hypertrophy.

View Article and Find Full Text PDF

Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose.

View Article and Find Full Text PDF

Phosphatidylinositol-3 kinases (PI3Ks) play a critical role in maintaining cardiovascular health and the development of cardiovascular diseases (CVDs). Specifically, vacuolar Protein Sorting 34 (VPS34) or PIK3C3, the only member of Class III PI3K, plays an important role in CVD progression. The main function of VPS34 is inducing the production of phosphatidylinositol 3-phosphate, which, together with other essential structural and regulatory proteins in forming VPS34 complexes, further regulates the mammalian target of rapamycin activation, autophagy, and endocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!