Background: Post-stroke neurocognitive disorder, though common, is often overlooked by clinicians. Moreover, although the Montreal Cognitive Assessment (MoCA) has proven to be a valid screening test for neurocognitive disorder, even more time saving tests would be preferred. In our study, we aimed to determine the diagnostic accuracy of the Clock Drawing Test (CDT) for post-stroke neurocognitive disorder and the association between the CDT and MoCA.
Methods: This study is part of the Norwegian Cognitive Impairment After Stroke study, a multicentre prospective cohort study following patients admitted with acute stroke. At the three-month follow-up, patients were classified with normal cognition, mild neurocognitive disorder, or major neurocognitive disorder according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. Any neurocognitive disorder compromised both mild- and major neurocognitive disorder. The CDT at the three-month assessment was given scores ranging from 0 to 5. Patients able to complete the CDT and whose cognitive status could be classified were included in analyses. The CDT diagnostic accuracy for post-stroke neurocognitive disorder was identified using receiver operating characteristic curves, sensitivity, specificity, positive predictive value, and negative predictive value. The association between the MoCA and CDT was analysed with Spearman's rho.
Results: Of 554 participants, 238 (43.0%) were women. Mean (SD) age was 71.5 (11.8) years, while mean (SD) National Institutes of Health Stroke Scale score was 2.6 (3.7). The area under the receiver operating characteristic curve of the CDT for major neurocognitive disorder and any neurocognitive disorder was 0.73 (95% CI, 0.68-0.79) and 0.68 (95% CI, 0.63-0.72), respectively. A CDT cutoff of < 5 yielded 68% sensitivity and 60% specificity for any neurocognitive disorder and 78% sensitivity and 53% specificity for major neurocognitive disorder. Spearman's correlation coefficient between scores on the MoCA and CDT was 0.50 (95% CI, 0.44-0.57, p < .001).
Conclusions: The CDT is not accurate enough to diagnose post-stroke neurocognitive disorder but shows acceptable accuracy in identifying major neurocognitive disorder. Performance on the CDT was associated with performance on MoCA; however, the CDT is inferior to MoCA in identifying post-stroke neurocognitive disorder.
Trial Registration: ClinicalTrials.gov (NCT02650531). Retrospectively registered January 8, 2016.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775614 | PMC |
http://dx.doi.org/10.1186/s12883-023-03523-w | DOI Listing |
Nat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFNat Commun
December 2024
Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.
View Article and Find Full Text PDFJ Neurosci Res
January 2025
International School of Medicine, University of Health Sciences, Istanbul, Turkey.
Neurological diseases are central nervous system (CNS) disorders affecting the whole body. Early diagnosis of the diseases is difficult due to the lack of disease-specific tests. Adding new biomarkers external to the CNS facilitates the diagnosis of neurological diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!