Biomimetic dental implant production using selective laser powder bed fusion melting: In-vitro results.

J Mech Behav Biomed Mater

Department of Mechanical Engineering, University of Eskisehir Osmangazi, Eskişehir, Turkey; Advanced Manufacturing Research Centre (AMRC), University of Sheffield, Blackburn, BB2 7HP, UK.

Published: March 2024

Instead of a textured surface with irregular pore size and distribution as in conventional dental implants, the use of lattice structures with regular geometric structure and controlled pore size produced by selective laser powder bed fusion melting (LPDF) technique will provide more predictable and successful results regarding osseointegration and mechanics. In this study, biomimetic dental implants with 2 different pore designs were fabricated by LPDF technique and compared with conventional dental implants in terms of surface characterization and resistance to biomechanical forces. Finite element analysis, scanning electron microscopy, computed micro tomography scanning, ISO 14801 tests and detork tests were used for the comparison. The tested biomimetic implants were found to be as durable as conventional implants in terms of mechanical strength and detork values. They were also found to be 40-60% more advantageous than conventional dental implants with respect to surface area and volume. As a result, it was concluded that biomimetic dental implants with sufficient mechanical strength and complex surface geometries can be made as designed without changing the reliable base material and can be produced using a different manufacturing method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.106360DOI Listing

Publication Analysis

Top Keywords

dental implants
20
biomimetic dental
12
conventional dental
12
selective laser
8
laser powder
8
powder bed
8
bed fusion
8
fusion melting
8
pore size
8
lpdf technique
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!