A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light transmittance through resin-matrix composite onlays adhered to resin-matrix cements or flowable composites. | LitMetric

Light transmittance through resin-matrix composite onlays adhered to resin-matrix cements or flowable composites.

J Mech Behav Biomed Mater

Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505, Viseu, Portugal; Center for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, 4800-058, Guimarães, Portugal; LABBELS - Associate Laboratory, University of Minho, Guimarães, 4710-057 Braga, Portugal. Electronic address:

Published: March 2024

Objective: The aim of this study was to evaluate the influence of the thickness of resin-matrix composite blocks manufactured by CAD-CAM on the light transmittance towards different resin-matrix cements or flowable composites.

Methods: Sixty specimens of resin-matrix composite CAD-CAM blocks reinforced with 89 wt% inorganic fillers were cross-sectioned with 2 or 3 mm thicknesses. The specimens were conditioned with adhesive system and divided in groups according to the luting material, namely: two dual-cured resin-matrix cements, two traditional flowable resin-matrix composites, and one thermal-induced flowable resin-matrix composite. Specimens were light-cured at 900 mW/cm for 40s. Light transmittance assays were preformed using a spectrophotometer with an integrated monochromator before and after light-curing. Microstructural analysis was performed by optical and scanning electron microscopy (SEM). Nanoindentation tests were performed to evaluate mechanical properties for indirect evaluation of degree of monomers conversion.

Results: Optical and SEM images revealed low thickness values for the cementation interfaces for the traditional flowable resin-matrix composite. The cement thickness increased with the size and content of inorganic fillers. The highest light transmittance was recorded for the onlay blocks cemented with the traditional flowable resin-matrix composites while a group cemented with the dual-cured resin-matrix cement revealed the lowest light transmittance. The elastic modulus and hardness increased for specimens with high content of inorganic fillers as well as it increased in function of the light transmittance.

Conclusions: The light transmittance of flowable resin-matrix composites was higher than that for resin-matrix cement after cementation to resin-matrix composites blocks. The type, size, and content of inorganic fillers of the luting material affected the thickness of the cement layer and light transmittance through the materials.

Clinical Relevance: On chair-side light curing, the transmission of visible light can be interfered by the chemical composition and viscosity of the luting materials. The increase in size and content of inorganic fillers of resin-matrix composites and luting materials can decrease the light transmittance leading to inefficient polymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.106353DOI Listing

Publication Analysis

Top Keywords

light transmittance
32
resin-matrix composite
20
inorganic fillers
20
flowable resin-matrix
20
resin-matrix composites
20
content inorganic
16
resin-matrix
15
resin-matrix cements
12
traditional flowable
12
size content
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!