Atherosclerotic plaque accounts for major adverse cardiovascular events because of its vulnerability. The classically activated macrophage (M1) and alternatively activated macrophage (M2) are implicated in the progression and regression of plaque, respectively. However, the therapeutic targets related to M2 macrophages still remain largely elusive. In this study, cell-type identification by estimating relative subsets of RNA transcripts and weighted gene coexpression network analysis algorithms were used to establish a weighted gene coexpression network for identifying M2 macrophage-related hub genes using GSE43292 data set. The results showed that genes were classified into 7 modules, with the blue module (Cor = 0.67, P = 3e-05) being the one that was most related to M2 macrophage infiltration in advanced plaques, and then 99 hub genes were identified from blue module. Meanwhile, 1289 differentially expressed genes were produced in GSE43292 data set. Subsequently, the intersection genes of hub genes and differentially expressed genes, including AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 , were obtained by Venn diagrams and named as key genes. Further validation using data sets GSE100927 and GSE41571 showed that 6 key genes all downregulated in advanced and vulnerable plaques compared with early and stable plaque samples (|Log2 (fold change)| > 0.5, P < 0.05 or 0.001), respectively. Receiver operator characteristic curve analysis indicated that the 6 key genes might have potential diagnostic value. The validation of key genes in the model in vitro and in vivo also demonstrated decreased mRNA expressions of AKTIP , ASPN , FAM26E , RAB23 , PLS3 , and PLSCR4 ( P < 0.05 or 0.001). Collectively, we identified AKTIP, ASPN, FAM26E, RAB23, PLS3, and PLSCR4 as M2 macrophage-related key genes during atherosclerotic progression, proposing potential intervention targets for advanced atherosclerotic plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000001528DOI Listing

Publication Analysis

Top Keywords

key genes
24
genes
13
hub genes
12
aktip aspn
12
aspn fam26e
12
fam26e rab23
12
rab23 pls3
12
pls3 plscr4
12
macrophage-related key
8
advanced atherosclerotic
8

Similar Publications

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism.

Per Med

January 2025

Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Knockout of a testis-specific gene cluster impairs male fertility in the fall armyworm, Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.

Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.

View Article and Find Full Text PDF

Characterization of 3,3'-iminodipropionitrile (IDPN) damaged utricle transcriptome in the adult mouse utricle.

Front Mol Neurosci

December 2024

State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.

Utricle is an important vestibular sensory organ for maintaining balance. 3,3'-iminodipropionitrile (IDPN), a prototype nitrile toxin, has been reported to be neurotoxic and vestibulotoxic, and can be used to establish an damage model of vestibular dysfunction. However, the mechanism of utricular HCs damage caused by IDPN is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!