We analyze the temporal dynamics of an optically-pumped quantum well vertical external-cavity surface-emitting laser (VECSEL) with a Semiconductor Saturable Absorber Mirror (SESAM) using the time series obtained when varying the pump power. We unveil the quasiperiodic route to chaos in the system by characterizing the Fourier spectra, the attractors in phase space, and the Lyapunov exponents for each temporal behavior observed: periodicity, quasiperiodicity, and chaos. Thus, we provide a complete description of this experimental observation of the route to chaos in a VECSEL-SESAM system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.507251DOI Listing

Publication Analysis

Top Keywords

route chaos
12
quasiperiodic route
8
experimental characterization
4
characterization quasiperiodic
4
chaos
4
chaos vecsel
4
vecsel sesam
4
sesam analyze
4
analyze temporal
4
temporal dynamics
4

Similar Publications

Identifying complex periodic windows surrounded by chaos in the two or higher dimensional parameter space of certain dynamical systems is a challenging task for time series analysis based on complex network approaches. This holds particularly true for the case of shrimp structures, where different bifurcations occur when crossing different domain boundaries. The corresponding dynamics often exhibit either period-doubling when crossing the inner boundaries or, respectively, intermittency for outer boundaries.

View Article and Find Full Text PDF

This paper presents a survey and critical analysis of the mathematical literature on modeling of dynamic populations living in a fluid medium. The present review paper is divided into two main parts: The first part deals with the multiscale derivation of deterministic and stochastic cross-diffusion systems governed by the incompressible Navier-Stokes equations. The derivation is obtained from the underlying description at the microscopic scale in kinetic theory models according to the micro-macro decomposition method.

View Article and Find Full Text PDF

The Labyrinthic map is a two-dimensional area-preserving map that features a robust transport barrier known as the shearless curve. In this study, we explore a dissipative version of this map, examining how dissipation affects the shearless curve and leads to the emergence of quasi-periodic or chaotic attractors, referred to as shearless attractors. We present a route to chaos of the shearless attractor known as the Curry-Yorke route.

View Article and Find Full Text PDF

Friction-induced vibration, particularly associated with the squealing problem in disk brake systems, has been a longstanding challenge in the automotive industry. In our research, we employed the synchronization theory to gain insights into the interaction between two coupled cantilever beams attached with tip masses. This proposed model emulates the dynamics of a mountain bike disk brake assembly.

View Article and Find Full Text PDF

Intermittency is widely observed in various nonlinear dynamical systems as an intriguing transient dynamic far from equilibrium. The internal dynamics formed by a pair of interacting optical solitons are often analogized to typical nonlinear systems. However, whether intermittency exists within the intramolecular motion remains to be investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!