The kinetics of optical switching due to the insulator-metal phase transition in a VO thin film is studied experimentally at different laser pulse repetition frequencies (PRFs) in the NIR range and compared with temperature kinetics obtained through the thermal conductance calculations. Two switching processes have been found with characteristic times <2 ms and <15 ms depending on the PRF; the former is explained by the accumulation of metallic domains remaining after a single-pulse phase transition, and the latter is referred to the heat accumulation in the film. Consequently, the dynamics of the microscopic domains is leading in the initiation of phase transition under pulse-periodic conditions compared to the macroscopic heat transfer. The reverse transition at the radiation turn-off depends on the PRF with a time coefficient of 17.5 µs/kHz and is determined by the metallic domains' decay in the film. The results are important for understanding the nature of the insulator-metal transition in thin films of VO as well as using them in all-optical switches of pulse-periodic laser radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.507192 | DOI Listing |
Adv Sci (Weinh)
January 2025
The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
The transformation of graphite into diamond (2-10 nm) at ordinary pressure by monodispersed Ta atoms was recently reported, while the effects of Ta concentration on the transition process remain obscure. Here, by regulating the Ta wire treatment time, as well as the annealing time and temperature, larger diamond grians (5-20 nm) are successfully synthesized, and the transition process of graphite to diamond is revealed to vary with Ta concentration. Specifically, short Ta wire treatments (5-10 min) induce graphite to form a "circle" structure and transforms into diamond directly after annealing.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil.
The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China.
Objective: The combination of pembrolizumab and chemotherapy has demonstrated notable clinical advantages in improving overall survival than chemotherapy alone for patients with untreated advanced pleural mesothelioma. The purpose of this study was to assess its cost-effectiveness.
Materials And Methods: A Markov state-transition model was constructed using data from the IND227 phase 3 randomized clinical trial.
PeerJ
January 2025
Key Laboratory of Sport Training of General Administration of Sport of China, Haidian, Beijing, China.
Background: Research on the swimming starts and turns in professional swimming has become increasingly refined. The breakout phase is a crucial transition from point between underwater and above-water movements. The side arm technique is commonly used during the backstroke breakout phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!