Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801865 | PMC |
http://dx.doi.org/10.1073/pnas.2304511121 | DOI Listing |
Heliyon
November 2024
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
Inflammatory pain, an important form of common pain, negatively influences the quality of life. Pathway-selective optogenetic control is a popular tool in neuronal function research; however, attempts to modulate rodent behavior using pathway-selective optogenetics remain unverified. We developed a methodology for pathway-selective optogenetics in rats, focusing on the delivery of recombinant adeno-associated virus (rAAV) containing channelrhodopsin-2 (ChR2) injected at the "Zusanli" acupoints to the dorsal root ganglia (DRG) and toes, which is a part of the complex neuron network.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany.
Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses.
View Article and Find Full Text PDFFront Neurosci
May 2022
Brain Science Institute, Tamagawa University, Tokyo, Japan.
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways.
View Article and Find Full Text PDFFront Neural Circuits
January 2022
Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
In our previous study, we showed that the defense responses induced by the selective optogenetic activation of the uncrossed output pathway from the deeper layer of the superior colliculus were environment dependent in the mouse. In a small closed box, the stimulus frequently induced flight (fast forward run away) responses, while in a large open field, the stimulus tended to induce backward retreat responses. We tested a hypothesis that the amygdala is involved in such environment dependency of the innate defense responses.
View Article and Find Full Text PDFExp Neurol
March 2022
Department of Neuroscience, Graduate School of Medicine, Kyoto University, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Japan; Human Brain Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address:
Selective manipulation of particular subcomponent of neural circuits is crucial for understanding the functional architecture of neural systems and for development of the future therapeutic strategies against neurological disorders. In this article, I review how the intersectional approaches with double viral vector technique was introduced for the pathway-selective manipulation of spinal circuits. In this technique, a retrograde gene transfer vector is injected into the terminal area of the targeted neurons and an anterograde vector is injected at the location of their somata.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!