Noninvasive blood glucose (BG) measurement could significantly improve the prevention and management of diabetes. In this paper, we present a robust novel paradigm based on analyzing photoplethysmogram (PPG) signals. The method includes signal pre-processing optimization and a multi-view cross-fusion transformer (MvCFT) network for non-invasive BG assessment. Specifically, a multi-size weighted fitting (MSWF) time-domain filtering algorithm is proposed to optimally preserve the most authentic morphological features of the original signals. Meanwhile, the spatial position encoding-based kinetics features are reconstructed and embedded as prior knowledge to discern the implicit physiological patterns. In addition, a cross-view feature fusion (CVFF) module is designed to incorporate pairwise mutual information among different views to adequately capture the potential complementary features in physiological sequences. Finally, the subject- wise 5- fold cross-validation is performed on a clinical dataset of 260 subjects. The root mean square error (RMSE) and mean absolute error (MAE) of BG measurements are 1.129 mmol/L and 0.659 mmol/L, respectively, and the optimal Zone A in the Clark error grid, representing none clinical risk, is 87.89%. The results indicate that the proposed method has great potential for homecare applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3351867 | DOI Listing |
Sensors (Basel)
October 2024
Graduate School, Space Engineering University, Beijing 101416, China.
Due to the small size of vehicle targets, complex background environments, and the discrete scattering characteristics of high-resolution synthetic aperture radar (SAR) images, existing deep learning networks face challenges in extracting high-quality vehicle features from SAR images, which impacts vehicle localization accuracy. To address this issue, this paper proposes a vehicle localization method for SAR images based on feature reconstruction and aggregation with rotating boxes. Specifically, our method first employs a backbone network that integrates the space-channel reconfiguration module (SCRM), which contains spatial and channel attention mechanisms specifically designed for SAR images to extract features.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2024
Noninvasive blood glucose (BG) measurement could significantly improve the prevention and management of diabetes. In this paper, we present a robust novel paradigm based on analyzing photoplethysmogram (PPG) signals. The method includes signal pre-processing optimization and a multi-view cross-fusion transformer (MvCFT) network for non-invasive BG assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!