Noninvasive blood glucose (BG) measurement could significantly improve the prevention and management of diabetes. In this paper, we present a robust novel paradigm based on analyzing photoplethysmogram (PPG) signals. The method includes signal pre-processing optimization and a multi-view cross-fusion transformer (MvCFT) network for non-invasive BG assessment. Specifically, a multi-size weighted fitting (MSWF) time-domain filtering algorithm is proposed to optimally preserve the most authentic morphological features of the original signals. Meanwhile, the spatial position encoding-based kinetics features are reconstructed and embedded as prior knowledge to discern the implicit physiological patterns. In addition, a cross-view feature fusion (CVFF) module is designed to incorporate pairwise mutual information among different views to adequately capture the potential complementary features in physiological sequences. Finally, the subject- wise 5- fold cross-validation is performed on a clinical dataset of 260 subjects. The root mean square error (RMSE) and mean absolute error (MAE) of BG measurements are 1.129 mmol/L and 0.659 mmol/L, respectively, and the optimal Zone A in the Clark error grid, representing none clinical risk, is 87.89%. The results indicate that the proposed method has great potential for homecare applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3351867DOI Listing

Publication Analysis

Top Keywords

multi-view cross-fusion
8
cross-fusion transformer
8
blood glucose
8
glucose measurement
8
transformer based
4
based kinetic
4
features
4
kinetic features
4
features non-invasive
4
non-invasive blood
4

Similar Publications

Due to the small size of vehicle targets, complex background environments, and the discrete scattering characteristics of high-resolution synthetic aperture radar (SAR) images, existing deep learning networks face challenges in extracting high-quality vehicle features from SAR images, which impacts vehicle localization accuracy. To address this issue, this paper proposes a vehicle localization method for SAR images based on feature reconstruction and aggregation with rotating boxes. Specifically, our method first employs a backbone network that integrates the space-channel reconfiguration module (SCRM), which contains spatial and channel attention mechanisms specifically designed for SAR images to extract features.

View Article and Find Full Text PDF

Noninvasive blood glucose (BG) measurement could significantly improve the prevention and management of diabetes. In this paper, we present a robust novel paradigm based on analyzing photoplethysmogram (PPG) signals. The method includes signal pre-processing optimization and a multi-view cross-fusion transformer (MvCFT) network for non-invasive BG assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!