Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of vision loss among working-aged adults. However, due to the low compliance rate of DR screening and expensive medical devices for ophthalmic exams, many DR patients did not seek proper medical attention until DR develops to irreversible stages (i.e., vision loss). Fortunately, the widely available electronic health record (EHR) databases provide an unprecedented opportunity to develop cost-effective machine-learning tools for DR detection. This paper proposes a Multi-branching Temporal Convolutional Network with Tensor Data Completion (MB-TCN-TC) model to analyze the longitudinal EHRs collected from diabetic patients for DR prediction. Experimental results demonstrate that the proposed MB-TCN-TC model not only effectively copes with the imbalanced data and missing value issues commonly seen in EHR datasets but also captures the temporal correlation and complicated interactions among medical variables in the longitudinal clinical records, yielding superior prediction performance compared to existing methods. Specifically, our MB-TCN-TC model provides AUROC and AUPRC scores of 0.949 and 0.793 respectively, achieving an improvement of 6.27% on AUROC, 11.85% on AUPRC, and 19.3% on F1 score compared with the traditional TCN model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979395 | PMC |
http://dx.doi.org/10.1109/JBHI.2024.3351949 | DOI Listing |
IEEE J Biomed Health Inform
March 2024
Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of vision loss among working-aged adults. However, due to the low compliance rate of DR screening and expensive medical devices for ophthalmic exams, many DR patients did not seek proper medical attention until DR develops to irreversible stages (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!