Precise control of charge carrier type and density of two-dimensional (2D) ambipolar semiconductors is the prerequisite for their applications in next-generation integrated circuits and electronic devices. Here, by fabricating a heterointerface between a 2D ambipolar semiconductor (hydrogenated germanene, GeH) and a ferroelectric substrate (PbMgNbO-PbTiO, PMN-PT), fine-tuning of charge carrier type and density of GeH is achieved. Due to ambipolar properties, proper band gap, and high carrier mobility of GeH, by applying the opposite local bias (±8 V), a lateral polarization in GeH is constructed with a change of work function by 0.6 eV. Besides, the built-in polarization in GeH nanoflake could promote the separation of photoexcited electron-hole pairs, which lead to 4 times enhancement of the photoconductivity after poling by 200 V. In addition, a gradient regulation of the work function of GeH from 4.94 to 5.21 eV by adjusting the local substrate polarization is demonstrated, which could be used for data storage at the micrometer size by forming p-n homojunctions. This work of constructing such heterointerfaces provides a pathway for applying 2D ambipolar semiconductors in nonvolatile memory devices, photoelectronic devices, and next-generation integrated circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c15191DOI Listing

Publication Analysis

Top Keywords

two-dimensional ambipolar
8
ambipolar semiconductor
8
charge carrier
8
carrier type
8
type density
8
ambipolar semiconductors
8
next-generation integrated
8
polarization geh
8
work function
8
geh
6

Similar Publications

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

Phosphorus-based heterojunction tunnel field-effect transistors: from atomic insights to circuit renovations.

Phys Chem Chem Phys

December 2024

Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran 1461944563, Iran.

Tunnel field-effect transistors (TFETs) are gaining interest for low-power applications, but challenges like poor drive current, delayed saturation, and ambipolarity can hinder their performance. This work proposes a dopingless heterojunction TFET (DL-HTDET) utilizing advanced materials, all based on phosphorus, to address these issues. Our approach involves a comprehensive and accurate analysis of the DL-HTDET's behavior.

View Article and Find Full Text PDF

Two-dimensional materials show great potential for future electronics beyond silicon materials. Here, we report an exotic multiple-port device based on multiple electrically tunable planar p-n homojunctions formed in a two-dimensional (2D) ambipolar semiconductor, tungsten diselenide (WSe). In this device, we prepare multiple gates consisting of a global gate and several local gates, by which electrostatically induced holes and electrons are simultaneously accumulated in a WSe channel, and furthermore, at the boundaries, p-n junctions are formed as directly visualized by Kelvin probe force microscopy.

View Article and Find Full Text PDF

Full van der Waals Ambipolar Ferroelectric Configurable Optical Hetero-Synapses for In-Sensor Computing.

Adv Mater

December 2024

Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China.

The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity.

View Article and Find Full Text PDF
Article Synopsis
  • New alkoxyphenanthrenes with unique structures were created for efficient organic field-effect transistors, boasting options for high-performance electron and hole transport.* ! -
  • The presence of sulfur and nitrogen in these molecules enhances their optical and electrical properties, promoting better packing and molecular interactions for improved conductivity.* ! -
  • Devices made with these compounds showed impressive mobility rates for both electron and hole transport, with significant findings on how molecular structure influences charge transfer efficiency through advanced computational methods.* !
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!