The fitness cost of an antibiotic resistance gene (ARG) can differ across host strains, creating refuges that allow the maintenance of an ARG in the absence of direct selection for its resistance phenotype. Despite the importance of such ARG-host interactions for predicting ARG dynamics, the basis of ARG fitness costs and their variability between hosts are not well understood. We determined the genetic basis of a host-dependent cost of a β-lactamase, , that conferred a significant cost in one strain but was close to neutral in 11 other spp. strains. Selection of a -encoding plasmid in the strain in which it initially had a high cost resulted in rapid and parallel compensation for that cost through mutations in a P1-like phage gene, . When the wild-type gene was added to a strain in which it was not present and in which was neutral, it caused the ARG to become costly. Thus, is both necessary and sufficient to explain costs in at least some host backgrounds. To our knowledge, these findings represent the first demonstrated case of the cost of an ARG being influenced by a genetic interaction with a phage gene. The interaction between a phage gene and a plasmid-borne ARG highlights the complexity of selective forces determining the maintenance and spread of ARGs and, by extension, encoding phage and plasmids in natural bacterial communities.IMPORTANCEAntibiotic resistance genes (ARGs) play a major role in the increasing problem of antibiotic resistance in clinically relevant bacteria. Selection of these genes occurs in the presence of antibiotics, but their eventual success also depends on the sometimes substantial costs they impose on host bacteria in antibiotic-free environments. We evolved an ARG that confers resistance to penicillin-type antibiotics in one host in which it did confer a cost and in one host in which it did not. We found that costs were rapidly and consistently reduced through parallel genetic changes in a gene encoded by a phage that was infecting the costly host. The unmutated version of this gene was sufficient to cause the ARG to confer a cost in a host in which it was originally neutral, demonstrating an antagonism between the two genetic elements and underlining the range and complexity of pressures determining ARG dynamics in natural populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865808 | PMC |
http://dx.doi.org/10.1128/mbio.02776-23 | DOI Listing |
Front Genome Ed
December 2024
Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
CRISPR-Cas type II and type V systems are inefficient in modifying bacteriophage T4 genome, due to hypermodification of its DNA. Here, we present a genome editing technique for bacteriophage T4 using the type VI CRISPR-Cas system. Using BzCas13b targeting of T4 phage, we were able to individually delete both T4 glucosyl transferase genes, and .
View Article and Find Full Text PDFISME J
January 2025
Department of Biological Sciences, University of Alberta, Canada.
In this study, we identify and characterize a novel phage-inducible chromosomal island found in commensal Escherichia coli MP1. This novel element, EcCIMP1, is induced and mobilized by the temperate helper phage vB_EcoP_Kapi1. EcCIMP1 contributes to superinfection immunity against its helper phage, impacting bacterial competition outcomes.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Pôle de Microbiologie, Institut Pasteur de Dakar, Sénégal; Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
Background: Acinetobacter baumannii, particularly carbapenem-resistant strains (CRAB), poses a major concern in the fight against antimicrobial resistance (AMR), identified as a top-priority pathogen by the World Health Organization (WHO). A. baumannii has intrinsic resistance to several antibiotics, including penicillin, cephalosporins, chloramphenicol, and fosfomycin, but the development of AMR has led to the emergence of extremely drug-resistant and pan-resistant isolates.
View Article and Find Full Text PDFBackground: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading pathogen causing severe endovascular infections. The prophage-encoded protein Gp05 has been identified as a critical virulence factor that contributes to MRSA persistence during vancomycin (VAN) treatment in an experimental endocarditis model. However, the underlining mechanisms driving this persistence phenotype remain poorly understood.
View Article and Find Full Text PDFPLoS One
December 2024
Laboratorio de Microbiología Experimental y Aplicada y Microbiología de Aguas (LAMEXA-LAMA), Universidad de Panamá, Panamá, Panamá.
The Enterobacter cloacae complex, a prominent bacterium responsible worldwide for most bloodstream infections in the hospital environment, has shown broad-spectrum antibiotic resistance, including carbapenems. Therefore, bacteriophages have again attracted the attention of the science and medical community as an alternative to control Multidrug resistant bacteria. In this study, water samples from Río Abajo River, in Panama City, Panama, were collected, for phage isolation, purification, characterization and propagation against the E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!