Magnetically separable CoFeO/MIL-101-NH adsorbent for Congo red efficient removal.

Environ Sci Pollut Res Int

Electronic Information School, Wuhan University, Wuhan, 430079, People's Republic of China.

Published: February 2024

AI Article Synopsis

  • Developing effective adsorbents for removing pollutants like Congo red (CR) remains challenging, but a novel composite, CoFeO/MIL-101-NH, was created that combines magnetic nanoparticles with a high surface area adsorbent for efficient removal from water.
  • The study examined key factors affecting CR adsorption, finding that it fits the pseudo-second-order kinetic and Langmuir isotherm models, and the adsorbent can be easily separated using a magnetic field within 30 seconds after use.
  • This composite shows impressive performance, achieving a maximum CR adsorption capacity of 1756.19 mg/g, maintains 78% effectiveness after five reuse cycles, and outperforms other dyes in adsorption tests, making it a promising

Article Abstract

The development of effective and practical adsorbents for eliminating pollutants still remains a significant challenge. Herein, we synthesized a novel magnetically separable composite, CoFeO/MIL-101-NH, through the in-situ growth of MIL-101-NH on magnetic nanoparticles, designed specifically for the removal of Congo red (CR) from aqueous solutions. MIL-101-NH possessed high BET surface area (240.485 m•g) and facile magnetic separation function and can be swiftly separated (within 30 s) through an external magnetic field post-adsorption. The investigation systematically explored the influence of crucial parameters, including adsorbent dosage, pH, adsorption duration, temperature, and the presence of interfering ions, on CR adsorption performance. Findings indicate that CR adsorption adheres to the pseudo-second-order (PSO) kinetic model and the Langmuir isotherm model. Thermodynamic analysis reveals the spontaneity, endothermic nature, and orderly progression of the adsorption process. Remarkably, the adsorbent with 0.1 g•L boasts an impressive maximum adsorption capacity of 1756.19 mg•g for CR at 298.15 K, establishing its competitive advantage. The reuse of the adsorbent over 5 cycles remains 78% of the initial adsorption. The CR adsorption mechanisms were elucidated, emphasizing the roles of π-π interactions, electrostatic forces, hydrogen bonding, and metal coordination. Comparison with other dyes, such as methylene blue (MB) and methyl orange (MO), and exploration of adsorption performance in binary dye systems, demonstrates the superior capacity and selectivity of this adsorbent for CR. In conclusion, our magnetically separable metal-organic framework (MOF)based composite presents a versatile and effective solution for CR removal, with promising applications in water treatment and environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-31796-8DOI Listing

Publication Analysis

Top Keywords

magnetically separable
12
congo red
8
adsorption
8
adsorption performance
8
adsorbent
5
separable cofeo/mil-101-nh
4
cofeo/mil-101-nh adsorbent
4
adsorbent congo
4
red efficient
4
efficient removal
4

Similar Publications

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

The specific extraction of glabridin from licorice residues using molecular imprinting technique.

Food Chem

December 2024

School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China. Electronic address:

The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin.

View Article and Find Full Text PDF

Missing teeth have been linked to incident cardiovascular disease, diabetes, and all-cause mortality. Our previous study revealed that signs of oral infections and inflammatory conditions (i.e.

View Article and Find Full Text PDF

Detecting brain tumours (BT) early improves treatment possibilities and increases patient survival rates. Magnetic resonance imaging (MRI) scanning offers more comprehensive information, such as better contrast and clarity, than any alternative scanning process. Manually separating BTs from several MRI images gathered in medical practice for cancer analysis is challenging and time-consuming.

View Article and Find Full Text PDF

Efficient removal of direct dyes and heavy metal ion by sodium alginate-based hydrogel microspheres: Equilibrium isotherms, kinetics and regeneration performance study.

Int J Biol Macromol

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:

Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!