Cattle Farming and Plantation Forest are Associated with Bartonella Occurrence in Wild Rodents.

Ecohealth

Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, Esperanza, Santa Fe, Argentina.

Published: December 2023

Bartonella spp. are intracellular hemotropic bacteria primarily transmitted by arthropod vectors to various mammalian hosts, including humans. In this study, we conducted a survey on wild populations of sigmodontine rodents, Akodon azarae and Oxymycterus rufus, inhabiting the Paraná River delta region. The study involved eight grids organized in a crossed 2 × 2 design, where four of the grids were exposed to cattle while the other four were not, and four grids were located in implanted forest while the remaining four were in natural grasslands. Our objective was to examine whether the occurrence of Bartonella spp. in rodents was associated with silvopastoral activities (cattle raising associated with timber production) conducted in the region. Additionally, we evaluated the associations between Bartonella infection and other environmental and host factors. We present compelling evidence of a significant positive association between Bartonella prevalence and the presence of implanted forests and cattle. Furthermore, we identified the presence of a Bartonella genotype related to the pathogen Bartonella rochalimaea, infecting both A. azarae and Ox. rufus. These findings suggest that anthropogenic land-use changes, particularly the development of silvopastoral practices in the region, may disrupt the dynamics of Bartonella.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10393-023-01671-6DOI Listing

Publication Analysis

Top Keywords

bartonella
8
bartonella spp
8
cattle
4
cattle farming
4
farming plantation
4
plantation forest
4
forest associated
4
associated bartonella
4
bartonella occurrence
4
occurrence wild
4

Similar Publications

Epidemiological characteristics and genetic diversity of Bartonella species from rodents in Guangxi Zhuang Autonomous Region, Southwestern China.

Acta Trop

December 2024

Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan province, China.; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China.. Electronic address:

Bartonella spp. are gram-negative bacteria recognized as zoonotic pathogens of wide spectrum mammals. Rodents are recognized as a natural reservoir of pathogens, and many Bartonella species transmitted by various blood-sucking arthropods have been detected in various rodents populations.

View Article and Find Full Text PDF

Yield of clinical metagenomics: insights from real-world practice for tissue infections.

EBioMedicine

December 2024

Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, 310003, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, PR China. Electronic address:

Background: While metagenomic next-generation sequencing (mNGS) has been acknowledged as a valuable diagnostic tool for infections, its clinical validity and impact on patient management when using fresh tissue samples remains uncertain.

Methods: We conducted a retrospective cross-sectional study involving patients who underwent tissue mNGS at a tertiary hospital in China from February 2021 to February 2024, aiming to assess its ability to detect plausible pathogens and its clinical validity and impact.

Findings: A total of 520 mNGS results from 508 patients were analysed, detecting plausible pathogens in 302 (58.

View Article and Find Full Text PDF

In recent years, discovery proteomics has emerged as a pivotal tool in biological research, especially when studying the intricate relationships among multiple organisms. To delve deeper into these interactions, we pioneered a bottom-up proteomics workflow. Using nanoLC-MS/MS and a label-free quantification method, this work specifically examines the differential protein expression in fleas (Ctenocephalides felis felis) that have been experimentally infected with Bartonella henselae, the causative agent of cat scratch disease (CSD).

View Article and Find Full Text PDF

Introduction: , a parasite on the body surface of sheep, directly attacks the host through biting and sucking blood and may also transmit pathogens in the process. There are currently only a few studies on the microbial composition of , while there are no such studies on pupae.

Methods: In this study, samples AT-1 to AT-4 each contained four individuals, while sample AT-5 comprised four pupae, all used for metagenomic sequencing and analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!