Donor human milk (DHM) provides myriad nutritional and immunological benefits for preterm and low birthweight infants. However, pasteurization leaves DHM devoid of potentially beneficial milk microbiota. In the present study, we performed milk microbiome transplantation from freshly collected mother's own milk (MOM) into pasteurized DHM. Small volumes of MOM (5%, 10%, or 30% v/v) were inoculated into pasteurized DHM and incubated at 37 °C for up to 8 h. Further, we compared microbiome recolonization in UV-C-treated and Holder-pasteurized DHM, as UV-C treatment has been shown to conserve important biochemical components of DHM that are lost during Holder pasteurization. Bacterial culture and viability-coupled metataxonomic sequencing were employed to assess the effectiveness of milk microbiome transplantation. Growth of transplanted MOM bacteria occurred rapidly in recolonized DHM samples; however, a greater level of growth was observed in Holder-pasteurized DHM compared to UV-C-treated DHM, potentially due to the conserved antimicrobial properties in UV-C-treated DHM. Viability-coupled metataxonomic analysis demonstrated similarity between recolonized DHM samples and fresh MOM samples, suggesting that the milk microbiome can be successfully transplanted into pasteurized DHM. These results highlight the potential of MOM microbiota transplantation to restore the microbial composition of UV-C-treated and Holder-pasteurized DHM and enhance the nutritional and immunological benefits of DHM for preterm and vulnerable infants. KEY POINTS: • Mother's own milk microbiome can be successfully transplanted into donor human milk. • Recolonization is equally successful in UV-C-treated and Holder-pasteurized milk. • Recolonization time should be restricted due to rapid bacterial growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776751 | PMC |
http://dx.doi.org/10.1007/s00253-023-12965-8 | DOI Listing |
J Gastroenterol Hepatol
January 2025
Faculty of Medicine, Division of Gastroenterology, Department of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Background: Gas production due to fermentation from fructose malabsorption (FM) or lactose malabsorption (LM) and small intestinal bacterial overgrowth (SIBO) contribute to the development of gastrointestinal symptoms in patients with irritable bowel syndrome (IBS). However, the impact of the carbohydrate malabsorption, unlike SIBO, is relatively unknown.
Methodology: A multicenter, prospective study of consecutive adults with IBS who underwent a hydrogen breath test (HBT) (glucose, 75 g; lactose, 25 g; or fructose, 25 g) was conducted.
Vet Sci
January 2025
Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
This study aimed to investigate the effects of maternal glycerol monolaurate complex (GML) and antibiotic (acetylisovaleryltylosin tartrate, ATLL) supplementation during late gestation and lactation on the reproductive performance of sows and the growth performance of piglets. In total, 64 pregnant sows were randomly divided into control, antibiotic, 0.1% GML, and 0.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark. Electronic address:
Xanthine oxidase (XO) and lactoperoxidase (LPO) are highly abundant enzymes in milk. Their substrates, xanthine and thiocyanate, are found in elevated amounts in infant saliva, leading to a proposed interaction between milk and saliva referred to as the XO-LPO system. This system is suggested to generate reactive oxygen and nitrogen species with potential antibacterial effects.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil. Electronic address:
This research investigated the influence of the microencapsulation of phenolic compounds (PCs) from organic coffee husk with whey protein concentrate (WPC) and maltodextrin on the abundance of intestinal bacterial populations and their metabolic activity during in vitro fecal fermentation. The microencapsulated PCs were gradually metabolized during fecal fermentation, resulting in significant transformations and an increase in PCs in the fermentation media. The metabolism of PCs by the fecal microbiota occurred concurrently with the consumption of sugars, production of organic acids, and reduction in pH in the media.
View Article and Find Full Text PDFAnn Nutr Metab
January 2025
Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland.
Background: The gut microbiota, or microbiome, is essential for human health. Early-life factors such as delivery mode, diet, and antibiotic use shape its composition, impacting both short- and long-term health outcomes. Dysbiosis, or alterations in the gut microbiota, is linked to conditions such as allergies, asthma, obesity, diabetes, inflammatory bowel disease, and necrotizing enterocolitis in preterm infants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!